Rewrite as equivalent rational expressions with the denominator [tex](4y-5)(y+7)(y-8)[/tex]:

[tex]\[
\frac{4}{4y^2 + 23y - 35}, \quad \frac{2y}{4y^2 - 37y + 40}
\][/tex]



Answer :

Let's solve the given problem step-by-step.

We need to rewrite the rational expressions [tex]\(\frac{4}{4y^2 + 23y - 35}\)[/tex] and [tex]\(\frac{2y}{4y^2 - 37y + 40}\)[/tex] with the common denominator [tex]\((4y - 5)(y + 7)(y - 8)\)[/tex].

### Step 1: Factor the denominators

First, factor the denominators of the given fractions.

1. For the first fraction [tex]\(\frac{4}{4y^2 + 23y - 35}\)[/tex]:
[tex]\[ 4y^2 + 23y - 35 \][/tex]
We need to find factors of [tex]\(4y^2 + 23y - 35\)[/tex].

We use the factoring method to get:
[tex]\[ (4y^2 + 23y - 35) = (4y - 5)(y + 7) \][/tex]

2. For the second fraction [tex]\(\frac{2y}{4y^2 - 37y + 40}\)[/tex]:
[tex]\[ 4y^2 - 37y + 40 \][/tex]
Likewise, we factorize [tex]\(4y^2 - 37y + 40\)[/tex] and get:
[tex]\[ (4y^2 - 37y + 40) = (4y - 5)(y - 8) \][/tex]

### Step 2: Determine the least common denominator (LCD)

The least common denominator (LCD) for both fractions is the product of their unique factors. Given, the common denominator:
[tex]\[ (4y - 5)(y + 7)(y - 8) \][/tex]

### Step 3: Rewrite each fraction with the common denominator

Now, we rewrite each fraction with this common denominator.

1. Rewrite [tex]\(\frac{4}{(4y - 5)(y + 7)}\)[/tex] with the common denominator [tex]\((4y - 5)(y + 7)(y - 8)\)[/tex]:
[tex]\[ \frac{4}{(4y - 5)(y + 7)} \][/tex]
To have the common denominator, multiply the numerator and denominator by the missing term [tex]\((y - 8)\)[/tex]:
[tex]\[ \frac{4 \cdot (y - 8)}{(4y - 5)(y + 7)(y - 8)} = \frac{4(y - 8)}{(4y - 5)(y + 7)(y - 8)} \][/tex]
[tex]\[ \frac{4(y - 8)}{(4y - 5)(y + 7)(y - 8)} = \frac{4y - 32}{(4y - 5)(y + 7)(y - 8)} \][/tex]

2. Rewrite [tex]\(\frac{2y}{(4y - 5)(y - 8)}\)[/tex] with the common denominator [tex]\((4y - 5)(y + 7)(y - 8)\)[/tex]:
[tex]\[ \frac{2y}{(4y - 5)(y - 8)} \][/tex]
To have the common denominator, multiply the numerator and denominator by the missing term [tex]\((y + 7)\)[/tex]:
[tex]\[ \frac{2y \cdot (y + 7)}{(4y - 5)(y - 8)(y + 7)} = \frac{2y(y + 7)}{(4y - 5)(y - 8)(y + 7)} \][/tex]
[tex]\[ \frac{2y(y + 7)}{(4y - 5)(y - 8)(y + 7)} = \frac{2y^2 + 14y}{(4y - 5)(y - 8)(y + 7)} \][/tex]

### Completed Equivalent Rational Expressions

The equivalent rational expressions with the common denominator [tex]\((4y - 5)(y + 7)(y - 8)\)[/tex] are:

1. [tex]\(\frac{4y - 32}{(4y - 5)(y + 7)(y - 8)}\)[/tex]
2. [tex]\(\frac{2y^2 + 14y}{(4y - 5)(y - 8)(y + 7)}\)[/tex]