Given the piecewise function:
[tex]\[ f(x) = \left\{
\begin{array}{ll}
x^2 & \text{if } x \leq 3 \\
2x - 4 & \text{if } x \ \textgreater \ 3
\end{array}
\right. \][/tex]

If [tex]\( x = -4 \)[/tex], then [tex]\( f(x) = \)[/tex]

Answer: [tex]\(\square\)[/tex]



Answer :

Certainly! Let's find [tex]\( f(x) \)[/tex] for [tex]\( x = -4 \)[/tex] using the given piecewise function:

The function is defined as follows:
[tex]\[ f(x) = \begin{cases} x^2 & \text{if } x \leq 3 \\ 2x - 4 & \text{if } x > 3 \end{cases} \][/tex]

Given [tex]\( x = -4 \)[/tex]:

1. First, we determine which piece of the piecewise function to use. Since [tex]\( -4 \leq 3 \)[/tex], we use the piece of the function where [tex]\( x \leq 3 \)[/tex]:

[tex]\[ f(x) = x^2 \][/tex]

2. Next, substitute [tex]\( x = -4 \)[/tex] into this part of the function:

[tex]\[ f(-4) = (-4)^2 \][/tex]

3. Compute the value:

[tex]\[ (-4)^2 = 16 \][/tex]

So, [tex]\( f(-4) = 16 \)[/tex].

Therefore, the answer is:
[tex]\[ \boxed{16} \][/tex]