What is the slope of the line that goes through the points [tex]$(-1, 4)$[/tex] and [tex]$(14, -2)$[/tex]?

A. [tex][tex]$-\frac{15}{6}$[/tex][/tex]

B. [tex]$-\frac{6}{13}$[/tex]

C. [tex]$-\frac{5}{2}$[/tex]

D. [tex][tex]$-\frac{6}{15}$[/tex][/tex]



Answer :

To find the slope of the line that goes through the points [tex]\((-1, 4)\)[/tex] and [tex]\( (14, -2) \)[/tex], we use the slope formula:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Here, [tex]\((x_1, y_1) = (-1, 4)\)[/tex] and [tex]\((x_2, y_2) = (14, -2)\)[/tex].

First, we calculate the change in [tex]\(y\)[/tex] (denoted as [tex]\(\Delta y\)[/tex]):

[tex]\[ \Delta y = y_2 - y_1 = -2 - 4 = -6 \][/tex]

Next, we calculate the change in [tex]\(x\)[/tex] (denoted as [tex]\(\Delta x\)[/tex]):

[tex]\[ \Delta x = x_2 - x_1 = 14 - (-1) = 14 + 1 = 15 \][/tex]

Now, we substitute [tex]\(\Delta y\)[/tex] and [tex]\(\Delta x\)[/tex] into the slope formula:

[tex]\[ m = \frac{\Delta y}{\Delta x} = \frac{-6}{15} \][/tex]

We then simplify the fraction to its lowest terms:

[tex]\[ m = -\frac{6}{15} = -\frac{2}{5} \][/tex]

Therefore, the slope of the line that goes through the points [tex]\((-1, 4)\)[/tex] and [tex]\( (14, -2) \)[/tex] is:

[tex]\[ \boxed{-\frac{2}{5}} \][/tex]

However, based on the given options, the closest and most simplified form corresponds to:

D. [tex]\(-\frac{6}{15}\)[/tex]