What is the difference of the given values to the correct level of precision?

[tex]\[
\begin{array}{r}
22.108 \, \text{L} \\
-\quad 5.80 \, \text{L} \\
\hline
\end{array}
\][/tex]

A. 16.308 L
B. 16.31 L
C. 16.3 L
D. 16 L



Answer :

Let's solve the problem step-by-step to find the difference between the given values to the correct level of precision.

1. Identify the given values:
[tex]\[ 22.108 \, \text{L} \quad \text{and} \quad 5.80 \, \text{L} \][/tex]

2. Subtract the values:
[tex]\[ 22.108 \, \text{L} - 5.80 \, \text{L} = 16.308 \, \text{L} \][/tex]
This gives us a preliminary result of 16.308 liters.

3. Consider the correct level of precision:
The correct level of precision requested is two decimal places. Therefore, we should round the preliminary result to two decimal places.

4. Round the result:
[tex]\[ 16.308 \, \text{L} \rightarrow 16.31 \, \text{L} \][/tex]
Rounding 16.308 to two decimal places gives us 16.31.

5. Verify the options and select the correct one:
```
16.308 L
16.31 L
16.3 L
16 L
```
From the above choices, the correct difference to two decimal places is [tex]\( 16.31 \, \text{L} \)[/tex].

Therefore, the difference of the given values to the correct level of precision (two decimal places) is:
[tex]\[ \boxed{16.31 \, \text{L}} \][/tex]