What are the solutions to the system of equations?

[tex]\[
\left\{
\begin{array}{l}
y = 2x^2 - 5x - 7 \\
y = 2x + 2
\end{array}
\right.
\][/tex]

A. [tex]\((0.5, 3)\)[/tex] and [tex]\((9, 20)\)[/tex]
B. [tex]\((4.5, 11)\)[/tex] and [tex]\((-1, 0)\)[/tex]
C. [tex]\((4.5, 6.5)\)[/tex] and [tex]\((-1, 0)\)[/tex]
D. [tex]\((-1, -4)\)[/tex] and [tex]\((4.5, 11)\)[/tex]



Answer :

To find the solutions to the given system of equations:
[tex]\[ \begin{cases} y = 2x^2 - 5x - 7 \\ y = 2x + 2 \end{cases} \][/tex]

we start by setting the two equations equal to each other:

[tex]\[ 2x^2 - 5x - 7 = 2x + 2 \][/tex]

Now, we need to move all terms to one side to form a standard quadratic equation:

[tex]\[ 2x^2 - 5x - 7 - 2x - 2 = 0 \][/tex]

Simplify this equation:

[tex]\[ 2x^2 - 7x - 9 = 0 \][/tex]

Now we need to solve this quadratic equation. We can use the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 2 \)[/tex], [tex]\( b = -7 \)[/tex], and [tex]\( c = -9 \)[/tex].

Calculate the discriminant ([tex]\( b^2 - 4ac \)[/tex]):

[tex]\[ b^2 - 4ac = (-7)^2 - 4(2)(-9) = 49 + 72 = 121 \][/tex]

Since the discriminant is positive, there will be two real solutions. Now, apply the quadratic formula:

[tex]\[ x = \frac{-(-7) \pm \sqrt{121}}{2(2)} = \frac{7 \pm 11}{4} \][/tex]

This gives us two solutions for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{7 + 11}{4} = \frac{18}{4} = 4.5 \][/tex]

and

[tex]\[ x = \frac{7 - 11}{4} = \frac{-4}{4} = -1 \][/tex]

Now that we have the [tex]\( x \)[/tex]-values, we need to find the corresponding [tex]\( y \)[/tex]-values using the linear equation [tex]\( y = 2x + 2 \)[/tex]:

For [tex]\( x = 4.5 \)[/tex]:

[tex]\[ y = 2(4.5) + 2 = 9 + 2 = 11 \][/tex]

For [tex]\( x = -1 \)[/tex]:

[tex]\[ y = 2(-1) + 2 = -2 + 2 = 0 \][/tex]

Therefore, the solutions to the system of equations are:

[tex]\[ (4.5, 11) \quad \text{and} \quad (-1, 0) \][/tex]

Looking at the given options, the correct solution is:

[tex]\[ (4.5, 11) \text{ and } (-1, 0) \][/tex]

So the answer is:
[tex]\[ (\textbf{4.5, 11) and (-1, 0)} \][/tex]