Solve the system of equations.

[tex]
\left\{\begin{array}{l}
y = 30x + 10 \\
y = 5x^2 - 25
\end{array}\right.
[/tex]

Enter your answers in the boxes:
( [tex]\square[/tex], [tex]\square[/tex] ) and ( [tex]\square[/tex], [tex]\square[/tex] ).



Answer :

To solve the system of equations:

[tex]\[ \begin{cases} y = 30x + 10 \\ y = 5x^2 - 25 \end{cases} \][/tex]

we'll find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that satisfy both equations simultaneously.

1. Step 1: Set the equations equal to each other

Since both expressions are equal to [tex]\(y\)[/tex], we can set them equal to each other:

[tex]\[ 30x + 10 = 5x^2 - 25 \][/tex]

2. Step 2: Rearrange the equation

Rearrange the equation to bring all terms to one side, forming a quadratic equation:

[tex]\[ 5x^2 - 30x - 35 = 0 \][/tex]

3. Step 3: Simplify the quadratic equation

Divide every term by 5 to simplify the quadratic equation:

[tex]\[ x^2 - 6x - 7 = 0 \][/tex]

4. Step 4: Solve the quadratic equation

To solve the quadratic equation [tex]\(x^2 - 6x - 7 = 0\)[/tex], we can factor it:

[tex]\[ (x - 7)(x + 1) = 0 \][/tex]

This gives us two solutions for [tex]\(x\)[/tex]:

[tex]\[ x - 7 = 0 \quad \Rightarrow \quad x = 7 \][/tex]
[tex]\[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \][/tex]

5. Step 5: Find the corresponding [tex]\(y\)[/tex] values

Substitute [tex]\(x = 7\)[/tex] and [tex]\(x = -1\)[/tex] back into either original equation to find the corresponding [tex]\(y\)[/tex] values. We'll use the first equation [tex]\(y = 30x + 10\)[/tex]:

- For [tex]\(x = 7\)[/tex]:

[tex]\[ y = 30(7) + 10 = 210 + 10 = 220 \][/tex]

- For [tex]\(x = -1\)[/tex]:

[tex]\[ y = 30(-1) + 10 = -30 + 10 = -20 \][/tex]

6. Step 6: Write the solutions

The solutions to the system of equations are:

[tex]\[ (x, y) = (-1, -20) \quad \text{and} \quad (7, 220) \][/tex]

Thus, the solutions are:

[tex]\[ (-1, -20) \][/tex]
[tex]\[ (7, 220) \][/tex]