Find the product.

[tex]\[
\begin{array}{c}
\left[\begin{array}{c}
-2 \\
4
\end{array}\right]
\left[\begin{array}{ll}
4 & 8
\end{array}\right]
\end{array}
\][/tex]

(Note: Ensure that the matrices and their operations are correctly represented for accurate calculations.)



Answer :

Sure! To find the product of the given matrices, follow these steps:

Consider the two matrices:
[tex]\[ A = \begin{pmatrix} -2 \\ 4 \end{pmatrix} \][/tex]
[tex]\[ B = \begin{pmatrix} 4 & 8 \end{pmatrix} \][/tex]

We need to perform matrix multiplication [tex]\( A \cdot B \)[/tex].

1. Set Up the Multiplication:

The matrix [tex]\( A \)[/tex] is a [tex]\( 2 \times 1 \)[/tex] matrix:
[tex]\[ A = \begin{pmatrix} -2 \\ 4 \end{pmatrix} \][/tex]

The matrix [tex]\( B \)[/tex] is a [tex]\( 1 \times 2 \)[/tex] matrix:
[tex]\[ B = \begin{pmatrix} 4 & 8 \end{pmatrix} \][/tex]

When multiplying two matrices, the resulting matrix [tex]\( C \)[/tex] will have dimensions corresponding to the number of rows of the first matrix and the number of columns of the second matrix. So, [tex]\( C \)[/tex] will be a [tex]\( 2 \times 2 \)[/tex] matrix.

2. Multiply and Sum the Elements:

To find the element [tex]\( c_{11} \)[/tex] in the first row and first column of matrix [tex]\( C \)[/tex], we multiply the corresponding elements from the first row of [tex]\( A \)[/tex] and the first column of [tex]\( B \)[/tex]:

[tex]\[ c_{11} = -2 \times 4 = -8 \][/tex]

To find the element [tex]\( c_{12} \)[/tex] in the first row and second column of matrix [tex]\( C \)[/tex], we multiply the corresponding elements from the first row of [tex]\( A \)[/tex] and the second column of [tex]\( B \)[/tex]:

[tex]\[ c_{12} = -2 \times 8 = -16 \][/tex]

To find the element [tex]\( c_{21} \)[/tex] in the second row and first column of matrix [tex]\( C \)[/tex], we multiply the corresponding elements from the second row of [tex]\( A \)[/tex] and the first column of [tex]\( B \)[/tex]:

[tex]\[ c_{21} = 4 \times 4 = 16 \][/tex]

To find the element [tex]\( c_{22} \)[/tex] in the second row and second column of matrix [tex]\( C \)[/tex], we multiply the corresponding elements from the second row of [tex]\( A \)[/tex] and the second column of [tex]\( B \)[/tex]:

[tex]\[ c_{22} = 4 \times 8 = 32 \][/tex]

3. Form the Resulting Matrix:

Combining these results, we get the resultant matrix [tex]\( C \)[/tex]:

[tex]\[ C = \begin{pmatrix} -8 & -16 \\ 16 & 32 \end{pmatrix} \][/tex]

So, the product of the given matrices is:

[tex]\[ \begin{pmatrix} -8 & -16 \\ 16 & 32 \end{pmatrix} \][/tex]