Determine [tex]$f(5)$[/tex] for [tex]$f(x)=\left\{\begin{array}{lr}x^3, & x\ \textless \ -3 \\ 2x^2-9, & -3 \leq x\ \textless \ 4 \\ 5x+4, & x \geq 4\end{array}\right\}$[/tex]



Answer :

To find [tex]\( f(5) \)[/tex] for the piecewise function

[tex]\[ f(x) = \begin{cases} x^3, & \text{if } x < -3 \\ 2x^2 - 9, & \text{if } -3 \leq x < 4 \\ 5x + 4, & \text{if } x \geq 4 \end{cases} \][/tex]

we need to determine which piece of the piecewise function to use based on the value of [tex]\( x \)[/tex].

Given [tex]\( x = 5 \)[/tex]:

1. We check the conditions for [tex]\( x \)[/tex]:
- [tex]\( x < -3 \)[/tex]: This is not true for [tex]\( x = 5 \)[/tex].
- [tex]\(-3 \leq x < 4\)[/tex]: This is not true for [tex]\( x = 5 \)[/tex].
- [tex]\( x \geq 4 \)[/tex]: This condition is true for [tex]\( x = 5 \)[/tex].

Since the condition [tex]\( x \geq 4 \)[/tex] is satisfied, we use the piece of the function [tex]\( f(x) = 5x + 4 \)[/tex].

2. Substitute [tex]\( x = 5 \)[/tex] into the function [tex]\( 5x + 4 \)[/tex]:

[tex]\[ f(5) = 5(5) + 4 \][/tex]

3. Perform the arithmetic:

[tex]\[ f(5) = 25 + 4 = 29 \][/tex]

Thus, the value of [tex]\( f(5) \)[/tex] is [tex]\( 29 \)[/tex].