Which equation is equivalent to [tex]\sqrt{x^2+81}=x+10[/tex]?

A. [tex]x+9=x+10[/tex]

B. [tex]x+9=x^2+20x+100[/tex]

C. [tex]x^2+81=x^2+100[/tex]

D. [tex]x^2+81=x^2+20x+100[/tex]



Answer :

To determine which equation is equivalent to [tex]\(\sqrt{x^2 + 81} = x + 10\)[/tex], let's carefully undergo a detailed, step-by-step transformation of the given equation.

1. Starting with the given equation:
[tex]\[\sqrt{x^2 + 81} = x + 10\][/tex]

2. Square both sides to eliminate the square root:
[tex]\[ (\sqrt{x^2 + 81})^2 = (x + 10)^2 \][/tex]
This simplifies to:
[tex]\[ x^2 + 81 = (x + 10)^2 \][/tex]

3. Expand the right side:
[tex]\[ x^2 + 81 = x^2 + 20x + 100 \][/tex]

Thus, the equation that is equivalent to [tex]\(\sqrt{x^2 + 81} = x + 10\)[/tex] is:
[tex]\[ x^2 + 81 = x^2 + 20x + 100 \][/tex]

So, the correct choice is:
[tex]\[ \boxed{x^2 + 81 = x^2 + 20 x + 100} \][/tex]