What is the solution of [tex]$\sqrt[3]{x+8}=-4$[/tex]?

A. [tex]x=-72[/tex]
B. [tex]x=-66[/tex]
C. [tex]x=58[/tex]
D. No solution



Answer :

To solve the equation [tex]\(\sqrt[3]{x+8} = -4\)[/tex], follow these steps:

1. Isolate the cube root: The cube root is already isolated on the left side of the equation.
[tex]\[ \sqrt[3]{x+8} = -4 \][/tex]

2. Eliminate the cube root: Raise both sides of the equation to the power of 3 to get rid of the cube root.
[tex]\[ \left(\sqrt[3]{x+8}\right)^3 = (-4)^3 \][/tex]

3. Simplify both sides:
[tex]\[ x + 8 = -64 \][/tex]

4. Solve for [tex]\( x \)[/tex]: Subtract 8 from both sides to solve for [tex]\( x \)[/tex].
[tex]\[ x + 8 - 8 = -64 - 8 \][/tex]
[tex]\[ x = -72 \][/tex]

Thus, the solution to the equation [tex]\(\sqrt[3]{x+8} = -4\)[/tex] is [tex]\( x = -72 \)[/tex].

So, the correct answer is:

[tex]\[ x = -72 \][/tex]