Answer :
To solve for [tex]\( X \)[/tex] in the equation [tex]\( 8X - 2 - 5X = 8 \)[/tex], follow these steps:
1. Combine like terms on the left side of the equation:
The terms involving [tex]\( X \)[/tex] are [tex]\( 8X \)[/tex] and [tex]\( -5X \)[/tex].
[tex]\[ 8X - 5X = 3X \][/tex]
Therefore, the equation becomes:
[tex]\[ 3X - 2 = 8 \][/tex]
2. Isolate the term with [tex]\( X \)[/tex] by adding [tex]\( 2 \)[/tex] to both sides of the equation:
[tex]\[ 3X - 2 + 2 = 8 + 2 \][/tex]
Simplifying this, we get:
[tex]\[ 3X = 10 \][/tex]
3. Solve for [tex]\( X \)[/tex] by dividing both sides by [tex]\( 3 \)[/tex]:
[tex]\[ X = \frac{10}{3} \][/tex]
4. Convert the fraction to a decimal for clarity:
[tex]\[ X = 3.3333333333333335 \][/tex]
Given the solution, [tex]\( X = \frac{10}{3} \)[/tex] or approximately [tex]\( 3.33 \)[/tex], none of the provided multiple-choice options [tex]\( 7-A: x=13 \)[/tex], [tex]\( 7-B: X=21/2 \)[/tex], [tex]\( 7-C: X=31/2 \)[/tex], [tex]\( 7-D: X=7 \)[/tex] match the correct solution.
Thus, the correct answer is not listed in the multiple-choice options.
1. Combine like terms on the left side of the equation:
The terms involving [tex]\( X \)[/tex] are [tex]\( 8X \)[/tex] and [tex]\( -5X \)[/tex].
[tex]\[ 8X - 5X = 3X \][/tex]
Therefore, the equation becomes:
[tex]\[ 3X - 2 = 8 \][/tex]
2. Isolate the term with [tex]\( X \)[/tex] by adding [tex]\( 2 \)[/tex] to both sides of the equation:
[tex]\[ 3X - 2 + 2 = 8 + 2 \][/tex]
Simplifying this, we get:
[tex]\[ 3X = 10 \][/tex]
3. Solve for [tex]\( X \)[/tex] by dividing both sides by [tex]\( 3 \)[/tex]:
[tex]\[ X = \frac{10}{3} \][/tex]
4. Convert the fraction to a decimal for clarity:
[tex]\[ X = 3.3333333333333335 \][/tex]
Given the solution, [tex]\( X = \frac{10}{3} \)[/tex] or approximately [tex]\( 3.33 \)[/tex], none of the provided multiple-choice options [tex]\( 7-A: x=13 \)[/tex], [tex]\( 7-B: X=21/2 \)[/tex], [tex]\( 7-C: X=31/2 \)[/tex], [tex]\( 7-D: X=7 \)[/tex] match the correct solution.
Thus, the correct answer is not listed in the multiple-choice options.