What is the vertex of the parabola defined by the equation [tex]\((x-2)^2=-12(y-2)\)[/tex]?

A. [tex]\((-12, 2)\)[/tex]
B. [tex]\((2, 2)\)[/tex]
C. [tex]\((6, 2)\)[/tex]
D. [tex]\((2, -2)\)[/tex]



Answer :

To determine the vertex of the parabola defined by the equation [tex]\((x-2)^2 = -12(y-2)\)[/tex], we need to compare this equation to the standard form of a parabola equation:

For a vertical parabola, the standard form is:
[tex]\[ (x-h)^2 = 4a(y-k) \][/tex]
where [tex]\((h, k)\)[/tex] is the vertex of the parabola.

Let's rewrite our given equation in a form similar to the standard one:
[tex]\[ (x-2)^2 = -12(y-2) \][/tex]

By comparing [tex]\((x-2)^2 = -12(y-2)\)[/tex] with the standard form [tex]\((x-h)^2 = 4a(y-k)\)[/tex], we can directly see that the terms inside the parentheses indicate the vertex.

Here, [tex]\((x-2)\)[/tex] corresponds to [tex]\((x-h)\)[/tex], and [tex]\((y-2)\)[/tex] corresponds to [tex]\((y-k)\)[/tex]. This tells us that [tex]\(h = 2\)[/tex] and [tex]\(k = 2\)[/tex].

Therefore, the vertex [tex]\((h, k)\)[/tex] of the parabola is:
[tex]\[ (h, k) = (2, 2) \][/tex]

So the answer is:
B. [tex]\((2, 2)\)[/tex]