Answer :
To determine the length of the blade based on the given equation [tex]\( h = 7 \sin \left( \frac{\pi}{21} t \right) + 28 \)[/tex], let's analyze the properties of this periodic function.
1. Understanding the Equation:
- [tex]\( h \)[/tex]: Height of the end of the blade above the ground.
- [tex]\( 7 \)[/tex]: The amplitude of the sine wave, which indicates the maximum deviation from the central value (28 feet).
- [tex]\( \sin \left( \frac{\pi}{21} t \right) \)[/tex]: A sine function that oscillates between −1 and 1.
- [tex]\( 28 \)[/tex]: The vertical shift, which sets the central height above the ground.
2. Finding the Maximum Height:
- The maximum value of [tex]\( \sin \left( \frac{\pi}{21} t \right) \)[/tex] is [tex]\( 1 \)[/tex].
- Substitute [tex]\( \sin \left( \frac{\pi}{21} t \right) = 1 \)[/tex] into the equation:
[tex]\[ h_{\text{max}} = 7 \cdot 1 + 28 = 35 \text{ feet} \][/tex]
3. Finding the Minimum Height:
- The minimum value of [tex]\( \sin \left( \frac{\pi}{21} t \right) \)[/tex] is [tex]\( -1 \)[/tex].
- Substitute [tex]\( \sin \left( \frac{\pi}{21} t \right) = -1 \)[/tex] into the equation:
[tex]\[ h_{\text{min}} = 7 \cdot (-1) + 28 = 21 \text{ feet} \][/tex]
4. Calculating the Blade Length:
- The length of the blade is the difference between the maximum height and the minimum height:
[tex]\[ \text{Blade Length} = h_{\text{max}} - h_{\text{min}} = 35 \text{ feet} - 21 \text{ feet} = 14 \text{ feet} \][/tex]
Therefore, the blade is 14 feet long.
1. Understanding the Equation:
- [tex]\( h \)[/tex]: Height of the end of the blade above the ground.
- [tex]\( 7 \)[/tex]: The amplitude of the sine wave, which indicates the maximum deviation from the central value (28 feet).
- [tex]\( \sin \left( \frac{\pi}{21} t \right) \)[/tex]: A sine function that oscillates between −1 and 1.
- [tex]\( 28 \)[/tex]: The vertical shift, which sets the central height above the ground.
2. Finding the Maximum Height:
- The maximum value of [tex]\( \sin \left( \frac{\pi}{21} t \right) \)[/tex] is [tex]\( 1 \)[/tex].
- Substitute [tex]\( \sin \left( \frac{\pi}{21} t \right) = 1 \)[/tex] into the equation:
[tex]\[ h_{\text{max}} = 7 \cdot 1 + 28 = 35 \text{ feet} \][/tex]
3. Finding the Minimum Height:
- The minimum value of [tex]\( \sin \left( \frac{\pi}{21} t \right) \)[/tex] is [tex]\( -1 \)[/tex].
- Substitute [tex]\( \sin \left( \frac{\pi}{21} t \right) = -1 \)[/tex] into the equation:
[tex]\[ h_{\text{min}} = 7 \cdot (-1) + 28 = 21 \text{ feet} \][/tex]
4. Calculating the Blade Length:
- The length of the blade is the difference between the maximum height and the minimum height:
[tex]\[ \text{Blade Length} = h_{\text{max}} - h_{\text{min}} = 35 \text{ feet} - 21 \text{ feet} = 14 \text{ feet} \][/tex]
Therefore, the blade is 14 feet long.