Answer :
Sure, let's find the difference between the two matrices by subtracting corresponding elements step-by-step.
We are given two matrices:
Matrix [tex]\( A \)[/tex]:
[tex]\[ \begin{pmatrix} -11 & 4 \\ 3 & -2 \\ -10 & 13 \end{pmatrix} \][/tex]
Matrix [tex]\( B \)[/tex]:
[tex]\[ \begin{pmatrix} 1 & 2 \\ 1 & 3 \\ -2 & 6 \end{pmatrix} \][/tex]
To find the difference [tex]\( A - B \)[/tex], we subtract each element of matrix [tex]\( B \)[/tex] from the corresponding element of matrix [tex]\( A \)[/tex].
Let's perform the subtraction element by element:
First row:
[tex]\[ \begin{pmatrix} -11 - 1 & 4 - 2 \end{pmatrix} = \begin{pmatrix} -12 & 2 \end{pmatrix} \][/tex]
Second row:
[tex]\[ \begin{pmatrix} 3 - 1 & -2 - 3 \end{pmatrix} = \begin{pmatrix} 2 & -5 \end{pmatrix} \][/tex]
Third row:
[tex]\[ \begin{pmatrix} -10 - (-2) & 13 - 6 \end{pmatrix} = \begin{pmatrix} -8 & 7 \end{pmatrix} \][/tex]
Combining all the rows together, the difference matrix [tex]\( A - B \)[/tex] is:
[tex]\[ \begin{pmatrix} -12 & 2 \\ 2 & -5 \\ -8 & 7 \end{pmatrix} \][/tex]
Thus, the result of the subtraction is:
[tex]\[ \begin{pmatrix} -12 & 2 \\ 2 & -5 \\ -8 & 7 \end{pmatrix} \][/tex]
We are given two matrices:
Matrix [tex]\( A \)[/tex]:
[tex]\[ \begin{pmatrix} -11 & 4 \\ 3 & -2 \\ -10 & 13 \end{pmatrix} \][/tex]
Matrix [tex]\( B \)[/tex]:
[tex]\[ \begin{pmatrix} 1 & 2 \\ 1 & 3 \\ -2 & 6 \end{pmatrix} \][/tex]
To find the difference [tex]\( A - B \)[/tex], we subtract each element of matrix [tex]\( B \)[/tex] from the corresponding element of matrix [tex]\( A \)[/tex].
Let's perform the subtraction element by element:
First row:
[tex]\[ \begin{pmatrix} -11 - 1 & 4 - 2 \end{pmatrix} = \begin{pmatrix} -12 & 2 \end{pmatrix} \][/tex]
Second row:
[tex]\[ \begin{pmatrix} 3 - 1 & -2 - 3 \end{pmatrix} = \begin{pmatrix} 2 & -5 \end{pmatrix} \][/tex]
Third row:
[tex]\[ \begin{pmatrix} -10 - (-2) & 13 - 6 \end{pmatrix} = \begin{pmatrix} -8 & 7 \end{pmatrix} \][/tex]
Combining all the rows together, the difference matrix [tex]\( A - B \)[/tex] is:
[tex]\[ \begin{pmatrix} -12 & 2 \\ 2 & -5 \\ -8 & 7 \end{pmatrix} \][/tex]
Thus, the result of the subtraction is:
[tex]\[ \begin{pmatrix} -12 & 2 \\ 2 & -5 \\ -8 & 7 \end{pmatrix} \][/tex]