Question 20

The function [tex] f \) is defined as follows:
[tex]\[ f(s) = \frac{7s - 12}{2s - 14} \][/tex]

Find [tex] f(4) \).
Simplify your answer as much as possible.

[tex]\[ f(4) = \square \][/tex]
If applicable, click on "Undefined".

Check Answer



Answer :

To find [tex]\( f(4) \)[/tex] for the function [tex]\( f(s) = \frac{7s - 12}{2s - 14} \)[/tex], follow these steps:

1. Substitute [tex]\( s = 4 \)[/tex] into the function:

[tex]\[ f(4) = \frac{7(4) - 12}{2(4) - 14} \][/tex]

2. Calculate the numerator and the denominator separately:

- For the numerator:

[tex]\[ 7(4) - 12 = 28 - 12 = 16 \][/tex]

- For the denominator:

[tex]\[ 2(4) - 14 = 8 - 14 = -6 \][/tex]

3. Combine them into the fraction:

[tex]\[ f(4) = \frac{16}{-6} \][/tex]

4. Simplify the fraction:

The fraction [tex]\(\frac{16}{-6}\)[/tex] can be simplified by dividing both the numerator and the denominator by their greatest common divisor, which is 2:

[tex]\[ \frac{16 \div 2}{-6 \div 2} = \frac{8}{-3} = -\frac{8}{3} \][/tex]

So, the value of [tex]\( f(4) \)[/tex] is:

[tex]\[ f(4) = -\frac{8}{3} \][/tex]

In decimal form, [tex]\(-\frac{8}{3}\)[/tex] is approximately [tex]\(-2.6666666666666665\)[/tex].

Therefore,

[tex]\[ f(4) = -2.6666666666666665 \][/tex]

This is the simplified result for the function [tex]\( f \)[/tex] at [tex]\( s = 4 \)[/tex].