Answer :
Alright! Let's construct the truth table step-by-step for the compound statement [tex]\(\sim( P \vee \sim Q ) \leftrightarrow (\sim P \wedge Q)\)[/tex].
First, let's break down the statement into simpler components and compute the truth values for each component, ultimately leading to the final compound statement.
Here are the steps:
1. List all possible truth values for [tex]\(P\)[/tex] and [tex]\(Q\)[/tex].
2. Compute [tex]\(\sim Q\)[/tex] because it is used within the expression.
3. Compute [tex]\(P \vee \sim Q\)[/tex].
4. Compute [tex]\(\sim(P \vee \sim Q)\)[/tex].
5. Compute [tex]\(\sim P\)[/tex].
6. Compute [tex]\(\sim P \wedge Q\)[/tex].
7. Finally, compute [tex]\(\sim( P \vee \sim Q ) \leftrightarrow (\sim P \wedge Q)\)[/tex].
Now let's create the truth table:
| [tex]\(P\)[/tex] | [tex]\(Q\)[/tex] | [tex]\(\sim Q\)[/tex] | [tex]\(P \vee \sim Q\)[/tex] | [tex]\(\sim(P \vee \sim Q)\)[/tex] | [tex]\(\sim P\)[/tex] | [tex]\(\sim P \wedge Q\)[/tex] | [tex]\(\sim( P \vee \sim Q ) \leftrightarrow (\sim P \wedge Q)\)[/tex] |
|------|------|-------------|------------------|-----------------------|------------|---------------------|-----------------------------------------------|
| T | T | F | T | F | F | F | T |
| T | F | T | T | F | F | F | T |
| F | T | F | F | T | T | T | T |
| F | F | T | T | F | T | F | F |
Let's summarize the columns:
- [tex]\(\sim Q\)[/tex]: Negation of [tex]\(Q\)[/tex].
- [tex]\(P \vee \sim Q\)[/tex]: Logical OR between [tex]\(P\)[/tex] and [tex]\(\sim Q\)[/tex].
- [tex]\(\sim(P \vee \sim Q)\)[/tex]: Negation of [tex]\(P \vee \sim Q\)[/tex].
- [tex]\(\sim P\)[/tex]: Negation of [tex]\(P\)[/tex].
- [tex]\(\sim P \wedge Q\)[/tex]: Logical AND between [tex]\(\sim P\)[/tex] and [tex]\(Q\)[/tex].
- [tex]\(\sim( P \vee \sim Q ) \leftrightarrow (\sim P \wedge Q)\)[/tex]: Biconditional between [tex]\(\sim( P \vee \sim Q )\)[/tex] and [tex]\(\sim P \wedge Q\)[/tex].
By following these steps, you can see that the truth values in the final column match the expected result of the compound statement.
First, let's break down the statement into simpler components and compute the truth values for each component, ultimately leading to the final compound statement.
Here are the steps:
1. List all possible truth values for [tex]\(P\)[/tex] and [tex]\(Q\)[/tex].
2. Compute [tex]\(\sim Q\)[/tex] because it is used within the expression.
3. Compute [tex]\(P \vee \sim Q\)[/tex].
4. Compute [tex]\(\sim(P \vee \sim Q)\)[/tex].
5. Compute [tex]\(\sim P\)[/tex].
6. Compute [tex]\(\sim P \wedge Q\)[/tex].
7. Finally, compute [tex]\(\sim( P \vee \sim Q ) \leftrightarrow (\sim P \wedge Q)\)[/tex].
Now let's create the truth table:
| [tex]\(P\)[/tex] | [tex]\(Q\)[/tex] | [tex]\(\sim Q\)[/tex] | [tex]\(P \vee \sim Q\)[/tex] | [tex]\(\sim(P \vee \sim Q)\)[/tex] | [tex]\(\sim P\)[/tex] | [tex]\(\sim P \wedge Q\)[/tex] | [tex]\(\sim( P \vee \sim Q ) \leftrightarrow (\sim P \wedge Q)\)[/tex] |
|------|------|-------------|------------------|-----------------------|------------|---------------------|-----------------------------------------------|
| T | T | F | T | F | F | F | T |
| T | F | T | T | F | F | F | T |
| F | T | F | F | T | T | T | T |
| F | F | T | T | F | T | F | F |
Let's summarize the columns:
- [tex]\(\sim Q\)[/tex]: Negation of [tex]\(Q\)[/tex].
- [tex]\(P \vee \sim Q\)[/tex]: Logical OR between [tex]\(P\)[/tex] and [tex]\(\sim Q\)[/tex].
- [tex]\(\sim(P \vee \sim Q)\)[/tex]: Negation of [tex]\(P \vee \sim Q\)[/tex].
- [tex]\(\sim P\)[/tex]: Negation of [tex]\(P\)[/tex].
- [tex]\(\sim P \wedge Q\)[/tex]: Logical AND between [tex]\(\sim P\)[/tex] and [tex]\(Q\)[/tex].
- [tex]\(\sim( P \vee \sim Q ) \leftrightarrow (\sim P \wedge Q)\)[/tex]: Biconditional between [tex]\(\sim( P \vee \sim Q )\)[/tex] and [tex]\(\sim P \wedge Q\)[/tex].
By following these steps, you can see that the truth values in the final column match the expected result of the compound statement.