What is the center of a circle represented by the equation [tex]$(x+9)^2+(y-6)^2=10^2$[/tex]?

A. [tex]$(-9, 6)$[/tex]

B. [tex][tex]$(-6, 9)$[/tex][/tex]

C. [tex]$(6, -9)$[/tex]

D. [tex]$(9, -6)$[/tex]



Answer :

To determine the center of the circle represented by the equation [tex]\((x + 9)^2 + (y - 6)^2 = 10^2\)[/tex], it is helpful first to recall the standard form of the equation of a circle:

[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]

Here, [tex]\((h, k)\)[/tex] is the center of the circle, and [tex]\(r\)[/tex] is the radius.

Given the equation:

[tex]\[ (x + 9)^2 + (y - 6)^2 = 10^2 \][/tex]

we can compare this with the standard form:

- The term [tex]\((x + 9)^2\)[/tex] can be written as [tex]\((x - (-9))^2\)[/tex], indicating that [tex]\(h = -9\)[/tex].
- The term [tex]\((y - 6)^2\)[/tex] is already in the appropriate form [tex]\((y - k)^2\)[/tex], indicating that [tex]\(k = 6\)[/tex].

Therefore, the center of the circle is:

[tex]\[ (-9, 6) \][/tex]

So, the correct answer is [tex]\((-9, 6)\)[/tex].