Answer :
To solve the problem of finding the product of the given matrix and vector, we will perform matrix multiplication. Here are the detailed steps:
We are given a matrix:
[tex]\[ \begin{bmatrix} 4 & -2 \\ -3 & 5 \\ 9 & 10 \\ 6 & 11 \end{bmatrix} \][/tex]
and a vector:
[tex]\[ \begin{bmatrix} 7 \\ -4 \end{bmatrix} \][/tex]
We need to find the product of the matrix and the vector. The result will be a new vector obtained by performing the dot product of each row of the matrix with the vector.
Step-by-step, we will calculate each element of the resulting vector:
1. First element:
[tex]\[ (4 \times 7) + (-2 \times -4) = 28 + 8 = 36 \][/tex]
2. Second element:
[tex]\[ (-3 \times 7) + (5 \times -4) = -21 - 20 = -41 \][/tex]
3. Third element:
[tex]\[ (9 \times 7) + (10 \times -4) = 63 - 40 = 23 \][/tex]
4. Fourth element:
[tex]\[ (6 \times 7) + (11 \times -4) = 42 - 44 = -2 \][/tex]
Thus, the product of the given matrix and vector is:
[tex]\[ \begin{bmatrix} 36 \\ -41 \\ 23 \\ -2 \end{bmatrix} \][/tex]
So the final result is:
[tex]\[ \begin{array}{c} {\left[\begin{array}{cc} 4 & -2 \\ -3 & 5 \\ 9 & 10 \\ 6 & 11 \end{array}\right]\left[\begin{array}{c} 7 \\ -4 \end{array}\right]} = \\ {[[\begin{array}{c} 36 \\ -41 \\ 23 \\ -2 \end{array}]]} \end{array} \][/tex]
We are given a matrix:
[tex]\[ \begin{bmatrix} 4 & -2 \\ -3 & 5 \\ 9 & 10 \\ 6 & 11 \end{bmatrix} \][/tex]
and a vector:
[tex]\[ \begin{bmatrix} 7 \\ -4 \end{bmatrix} \][/tex]
We need to find the product of the matrix and the vector. The result will be a new vector obtained by performing the dot product of each row of the matrix with the vector.
Step-by-step, we will calculate each element of the resulting vector:
1. First element:
[tex]\[ (4 \times 7) + (-2 \times -4) = 28 + 8 = 36 \][/tex]
2. Second element:
[tex]\[ (-3 \times 7) + (5 \times -4) = -21 - 20 = -41 \][/tex]
3. Third element:
[tex]\[ (9 \times 7) + (10 \times -4) = 63 - 40 = 23 \][/tex]
4. Fourth element:
[tex]\[ (6 \times 7) + (11 \times -4) = 42 - 44 = -2 \][/tex]
Thus, the product of the given matrix and vector is:
[tex]\[ \begin{bmatrix} 36 \\ -41 \\ 23 \\ -2 \end{bmatrix} \][/tex]
So the final result is:
[tex]\[ \begin{array}{c} {\left[\begin{array}{cc} 4 & -2 \\ -3 & 5 \\ 9 & 10 \\ 6 & 11 \end{array}\right]\left[\begin{array}{c} 7 \\ -4 \end{array}\right]} = \\ {[[\begin{array}{c} 36 \\ -41 \\ 23 \\ -2 \end{array}]]} \end{array} \][/tex]