Answer :
Certainly! Let's solve the given system of equations step-by-step.
The system of equations is:
[tex]\[ \begin{aligned} 1) \quad & 2.5y + 3x = 27 \\ 2) \quad & 5x - 2.5y = 5 \end{aligned} \][/tex]
Step 1: Add the two equations to eliminate [tex]\( y \)[/tex].
[tex]\[ (2.5y + 3x) + (5x - 2.5y) = 27 + 5 \][/tex]
Simplify the left-hand side by combining like terms:
[tex]\[ 2.5y - 2.5y + 3x + 5x = 32 \][/tex]
This simplifies to:
[tex]\[ 8x = 32 \][/tex]
So, the result of adding the two equations is:
[tex]\[ 8x = 32 \][/tex]
Step 2: Solve for [tex]\( x \)[/tex] from the combined equation [tex]\( 8x = 32 \)[/tex].
[tex]\[ x = \frac{32}{8} = 4 \][/tex]
Step 3: Substitute [tex]\( x = 4 \)[/tex] back into one of the original equations to solve for [tex]\( y \)[/tex]. Let's use the first equation:
[tex]\[ 2.5y + 3x = 27 \][/tex]
Substitute [tex]\( x = 4 \)[/tex]:
[tex]\[ 2.5y + 3 \cdot 4 = 27 \][/tex]
This simplifies to:
[tex]\[ 2.5y + 12 = 27 \][/tex]
Subtract 12 from both sides:
[tex]\[ 2.5y = 27 - 12 \][/tex]
[tex]\[ 2.5y = 15 \][/tex]
Step 4: Solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{15}{2.5} = 6 \][/tex]
Conclusion: The solution to the system of equations is [tex]\( x = 4 \)[/tex] and [tex]\( y = 6 \)[/tex].
The system has a unique solution:
[tex]\( \boxed{x = 4, y = 6} \)[/tex]
The system of equations is:
[tex]\[ \begin{aligned} 1) \quad & 2.5y + 3x = 27 \\ 2) \quad & 5x - 2.5y = 5 \end{aligned} \][/tex]
Step 1: Add the two equations to eliminate [tex]\( y \)[/tex].
[tex]\[ (2.5y + 3x) + (5x - 2.5y) = 27 + 5 \][/tex]
Simplify the left-hand side by combining like terms:
[tex]\[ 2.5y - 2.5y + 3x + 5x = 32 \][/tex]
This simplifies to:
[tex]\[ 8x = 32 \][/tex]
So, the result of adding the two equations is:
[tex]\[ 8x = 32 \][/tex]
Step 2: Solve for [tex]\( x \)[/tex] from the combined equation [tex]\( 8x = 32 \)[/tex].
[tex]\[ x = \frac{32}{8} = 4 \][/tex]
Step 3: Substitute [tex]\( x = 4 \)[/tex] back into one of the original equations to solve for [tex]\( y \)[/tex]. Let's use the first equation:
[tex]\[ 2.5y + 3x = 27 \][/tex]
Substitute [tex]\( x = 4 \)[/tex]:
[tex]\[ 2.5y + 3 \cdot 4 = 27 \][/tex]
This simplifies to:
[tex]\[ 2.5y + 12 = 27 \][/tex]
Subtract 12 from both sides:
[tex]\[ 2.5y = 27 - 12 \][/tex]
[tex]\[ 2.5y = 15 \][/tex]
Step 4: Solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{15}{2.5} = 6 \][/tex]
Conclusion: The solution to the system of equations is [tex]\( x = 4 \)[/tex] and [tex]\( y = 6 \)[/tex].
The system has a unique solution:
[tex]\( \boxed{x = 4, y = 6} \)[/tex]