Use the following table to evaluate the derivative.

\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] & [tex]$f^{\prime}(x)$[/tex] & [tex]$g(x)$[/tex] & [tex]$g^{\prime}(x)$[/tex] \\
\hline
2 & 4 & -6 & -10 & 1 \\
\hline
\end{tabular}

Find [tex]\((f \cdot g)^{\prime}(2)\)[/tex]. If necessary, round to two decimal places.

Type your answer...



Answer :

To find [tex]\((f \cdot g)^{\prime}(2)\)[/tex], we need to use the product rule for derivatives. The product rule states:

[tex]\[(f \cdot g)^{\prime}(x) = f^{\prime}(x) \cdot g(x) + f(x) \cdot g^{\prime}(x)\][/tex]

Given the table with the following values at [tex]\(x = 2\)[/tex]:

[tex]\[ f(2) = 4 \][/tex]
[tex]\[ f^{\prime}(2) = -6 \][/tex]
[tex]\[ g(2) = -10 \][/tex]
[tex]\[ g^{\prime}(2) = 1 \][/tex]

We can substitute these values into the product rule formula.

Step-by-step calculation:

1. Calculate [tex]\(f^{\prime}(2) \cdot g(2)\)[/tex]:
[tex]\[ f^{\prime}(2) \cdot g(2) = -6 \cdot (-10) = 60 \][/tex]

2. Calculate [tex]\(f(2) \cdot g^{\prime}(2)\)[/tex]:
[tex]\[ f(2) \cdot g^{\prime}(2) = 4 \cdot 1 = 4 \][/tex]

3. Add the results from steps 1 and 2:
[tex]\[ (f \cdot g)^{\prime}(2) = 60 + 4 = 64 \][/tex]

So, [tex]\((f \cdot g)^{\prime}(2) = 64\)[/tex].