Consider the functions given below.

[tex]\[
\begin{array}{l}
P(x) = \frac{2}{3x-1} \\
Q(x) = \frac{6}{-3x+2}
\end{array}
\][/tex]

Match each expression with its simplified form.

[tex]\[
\begin{array}{ll}
1. & \frac{3(3x-1)}{-3x+2} \\
2. & \frac{-2(12x-5)}{(3x-1)(-3x+2)} \\
3. & \frac{2(12x+1)}{(3x-1)(-3x+2)} \\
4. & \frac{-3x+2}{3(3x-1)} \\
5. & \frac{12}{(3x-1)(-3x+2)} \\
6. & P(x) \cdot Q(x) \\
7. & P(x) \div Q(x)
\end{array}
\][/tex]

Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.



Answer :

Let's carefully match each expression with its simplified form, considering the functions [tex]\( P(x) = \frac{2}{3x - 1} \)[/tex] and [tex]\( Q(x) = \frac{6}{-3x + 2} \)[/tex].

Given:
[tex]\[ P(x) \cdot Q(x) \][/tex]
To multiply [tex]\( P(x) \)[/tex] and [tex]\( Q(x) \)[/tex]:
[tex]\[ P(x) \cdot Q(x) = \frac{2}{3x - 1} \cdot \frac{6}{-3x + 2} \][/tex]
We know that the simplified form of [tex]\( P(x) \cdot Q(x) \)[/tex] is:
[tex]\[ \frac{12}{(3x - 1)(-3x + 2)} \][/tex]

Next, given:
[tex]\[ P(x) \div Q(x) \][/tex]
To divide [tex]\( P(x) \)[/tex] by [tex]\( Q(x) \)[/tex]:
[tex]\[ P(x) \div Q(x) = \frac{2}{3x - 1} \div \frac{6}{-3x + 2} = \frac{2}{3x - 1} \cdot \frac{-3x + 2}{6} \][/tex]
We know that the simplified form of [tex]\( P(x) \div Q(x) \)[/tex] is:
[tex]\[ 2 \left(\frac{1}{3} - \frac{x}{2}\right) / (3x - 1) = \frac{-2(12x - 5)}{(3x-1)(-3x+2)} \][/tex]

Now, we can match them with their simplified expressions:
[tex]\[ \begin{array}{l} P(x) \cdot Q(x) \\ \xrightarrow{\text{ }} \\ \frac{12}{(3x-1)(-3x+2)}\\ \\ P(x) \div Q(x) \\ \xrightarrow{\text{ }} \\ \frac{-2(12x-5)}{(3x-1)(-3x+2)} \\ \end{array} \][/tex]