Use the following table to evaluate the derivative.
[tex]\[
\begin{tabular}{|c|c|c|c|c|}
\hline
$x$ & $f(x)$ & $f^{\prime}(x)$ & $g(x)$ & $g^{\prime}(x)$ \\
\hline
5 & 3 & 6 & 4 & -7 \\
\hline
\end{tabular}
\][/tex]

Find [tex]\(\left(\frac{f}{g}\right)^{\prime}(5)\)[/tex]. If necessary, round to two decimal places.

Type your answer...



Answer :

To find [tex]\(\left(\frac{f}{g}\right)^{\prime}(5)\)[/tex], we need to apply the quotient rule for differentiation. The quotient rule states that if you have a function [tex]\(h(x) = \frac{f(x)}{g(x)}\)[/tex], then its derivative [tex]\(h'(x)\)[/tex] can be found using the formula:

[tex]\[ \left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2} \][/tex]

Given the values from the table at [tex]\(x = 5\)[/tex]:
- [tex]\(f(5) = 3\)[/tex]
- [tex]\(f'(5) = 6\)[/tex]
- [tex]\(g(5) = 4\)[/tex]
- [tex]\(g'(5) = -7\)[/tex]

We substitute these values into the quotient rule formula as follows:

1. Calculate the numerator [tex]\(f'(x)g(x) - f(x)g'(x)\)[/tex]:
[tex]\[ f'(5)g(5) - f(5)g'(5) = 6 \cdot 4 - 3 \cdot (-7) \][/tex]
[tex]\[ = 24 + 21 \][/tex]
[tex]\[ = 45 \][/tex]

2. Calculate the denominator [tex]\(g(x)^2\)[/tex]:
[tex]\[ g(5)^2 = 4^2 = 16 \][/tex]

3. Divide the numerator by the denominator to find the derivative:
[tex]\[ \left(\frac{f}{g}\right)'(5) = \frac{45}{16} \][/tex]
[tex]\[ = 2.8125 \][/tex]

Therefore, the derivative [tex]\(\left(\frac{f}{g}\right)'(5)\)[/tex] is [tex]\(2.8125\)[/tex]. If rounded to two decimal places, the final answer is:

[tex]\[ \left(\frac{f}{g}\right)'(5) = 2.81 \][/tex]