Use the following table to evaluate the derivative.

\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] & [tex]$f^{\prime}(x)$[/tex] & [tex]$g(x)$[/tex] & [tex]$g^{\prime}(x)$[/tex] \\
\hline
3 & 7 & 1 & 11 & 8 \\
\hline
7 & 0 & -5 & 1 & 1 \\
\hline
11 & 1 & -6 & 9 & -4 \\
\hline
\end{tabular}

Find [tex]$(f \circ g)^{\prime}(3)$[/tex]. If necessary, round to two decimal places.

Type your answer...



Answer :

Let's find the value of [tex]\((f \circ g)^{\prime}(3)\)[/tex] using the given table.

We need to evaluate the derivative of the composition of two functions, [tex]\(f\)[/tex] and [tex]\(g\)[/tex], at [tex]\(x = 3\)[/tex]. The chain rule tells us that:

[tex]\[ (f \circ g)'(x) = f'(g(x)) \cdot g'(x) \][/tex]

First, we need to determine several values from the table for [tex]\(x = 3\)[/tex]:

1. [tex]\( g(3) \)[/tex]: According to the table, [tex]\( g(3) = 11 \)[/tex].

2. [tex]\( g'(3) \)[/tex]: According to the table, [tex]\( g'(3) = 8 \)[/tex].

3. Next, we need [tex]\( f'(g(3)) \)[/tex]. We already determined that [tex]\( g(3) = 11 \)[/tex], so we need [tex]\( f'(11) \)[/tex]:

[tex]\[ f'(11) = -6 \][/tex]

Now, applying the chain rule:

[tex]\[ (f \circ g)'(3) = f'(g(3)) \cdot g'(3) = f'(11) \cdot g'(3) = -6 \cdot 8 = -48 \][/tex]

Thus, the value of [tex]\((f \circ g)^{\prime}(3)\)[/tex] is:

[tex]\[ -48 \][/tex]