Answer :
Sure, let's construct the truth table for the compound statement [tex]\( q \wedge (\sim p \vee r) \)[/tex]. We need to determine the truth value of this statement for all possible combinations of truth values of [tex]\( p \)[/tex], [tex]\( q \)[/tex], and [tex]\( r \)[/tex]. Here is the step-by-step construction of the truth table:
1. List all possible combinations of [tex]\( p \)[/tex], [tex]\( q \)[/tex], and [tex]\( r \)[/tex]:
There are 3 variables, so there are [tex]\(2^3 = 8\)[/tex] possible combinations of truth values.
[tex]\[ \begin{array}{|c|c|c|} \hline p & q & r \\ \hline T & T & T \\ T & T & F \\ T & F & T \\ T & F & F \\ F & T & T \\ F & T & F \\ F & F & T \\ F & F & F \\ \hline \end{array} \][/tex]
2. Calculate [tex]\( \sim p \)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|} \hline p & q & r & \sim p \\ \hline T & T & T & F \\ T & T & F & F \\ T & F & T & F \\ T & F & F & F \\ F & T & T & T \\ F & T & F & T \\ F & F & T & T \\ F & F & F & T \\ \hline \end{array} \][/tex]
3. Calculate [tex]\( \sim p \vee r \)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline p & q & r & \sim p & \sim p \vee r \\ \hline T & T & T & F & T \\ T & T & F & F & F \\ T & F & T & F & T \\ T & F & F & F & F \\ F & T & T & T & T \\ F & T & F & T & T \\ F & F & T & T & T \\ F & F & F & T & T \\ \hline \end{array} \][/tex]
4. Calculate [tex]\( q \wedge (\sim p \vee r) \)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline p & q & r & \sim p & \sim p \vee r & q \wedge (\sim p \vee r) \\ \hline T & T & T & F & T & T \\ T & T & F & F & F & F \\ T & F & T & F & T & F \\ T & F & F & F & F & F \\ F & T & T & T & T & T \\ F & T & F & T & T & T \\ F & F & T & T & T & F \\ F & F & F & T & T & F \\ \hline \end{array} \][/tex]
Here's the completed truth table for the compound statement [tex]\( q \wedge (\sim p \vee r) \)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|} \hline p & q & r & q \wedge (\sim p \vee r) \\ \hline T & T & T & T \\ T & T & F & F \\ T & F & T & F \\ T & F & F & F \\ F & T & T & T \\ F & T & F & T \\ F & F & T & F \\ F & F & F & F \\ \hline \end{array} \][/tex]
This details each step to determine the truth values for the compound statement [tex]\( q \wedge (\sim p \vee r) \)[/tex].
1. List all possible combinations of [tex]\( p \)[/tex], [tex]\( q \)[/tex], and [tex]\( r \)[/tex]:
There are 3 variables, so there are [tex]\(2^3 = 8\)[/tex] possible combinations of truth values.
[tex]\[ \begin{array}{|c|c|c|} \hline p & q & r \\ \hline T & T & T \\ T & T & F \\ T & F & T \\ T & F & F \\ F & T & T \\ F & T & F \\ F & F & T \\ F & F & F \\ \hline \end{array} \][/tex]
2. Calculate [tex]\( \sim p \)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|} \hline p & q & r & \sim p \\ \hline T & T & T & F \\ T & T & F & F \\ T & F & T & F \\ T & F & F & F \\ F & T & T & T \\ F & T & F & T \\ F & F & T & T \\ F & F & F & T \\ \hline \end{array} \][/tex]
3. Calculate [tex]\( \sim p \vee r \)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline p & q & r & \sim p & \sim p \vee r \\ \hline T & T & T & F & T \\ T & T & F & F & F \\ T & F & T & F & T \\ T & F & F & F & F \\ F & T & T & T & T \\ F & T & F & T & T \\ F & F & T & T & T \\ F & F & F & T & T \\ \hline \end{array} \][/tex]
4. Calculate [tex]\( q \wedge (\sim p \vee r) \)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline p & q & r & \sim p & \sim p \vee r & q \wedge (\sim p \vee r) \\ \hline T & T & T & F & T & T \\ T & T & F & F & F & F \\ T & F & T & F & T & F \\ T & F & F & F & F & F \\ F & T & T & T & T & T \\ F & T & F & T & T & T \\ F & F & T & T & T & F \\ F & F & F & T & T & F \\ \hline \end{array} \][/tex]
Here's the completed truth table for the compound statement [tex]\( q \wedge (\sim p \vee r) \)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|} \hline p & q & r & q \wedge (\sim p \vee r) \\ \hline T & T & T & T \\ T & T & F & F \\ T & F & T & F \\ T & F & F & F \\ F & T & T & T \\ F & T & F & T \\ F & F & T & F \\ F & F & F & F \\ \hline \end{array} \][/tex]
This details each step to determine the truth values for the compound statement [tex]\( q \wedge (\sim p \vee r) \)[/tex].