For the given values of [tex]$n$[/tex] and [tex]$r$[/tex], evaluate

(a) [tex]$\frac{n!}{(n-r)!}$[/tex]

(b) [tex]$\frac{n!}{r!(n-r)!}$[/tex]

for [tex]$n=13$[/tex] and [tex]$r=4$[/tex].

(a) When [tex]$n=13$[/tex] and [tex]$r=4$[/tex], [tex]$\frac{n!}{(n-r)!} = \square$[/tex]

(Simplify your answer. Type an integer or a simplified fraction.)



Answer :

Sure! Let's evaluate the expressions step by step given the values [tex]\( n = 13 \)[/tex] and [tex]\( r = 4 \)[/tex].

### Part (a)
We need to evaluate [tex]\(\frac{n!}{(n-r)!}\)[/tex].

1. Substitute the values of [tex]\( n \)[/tex] and [tex]\( r \)[/tex]:
[tex]\[ n = 13, \quad r = 4 \][/tex]

2. Calculate [tex]\( n - r \)[/tex]:
[tex]\[ n - r = 13 - 4 = 9 \][/tex]

3. The expression simplifies to:
[tex]\[ \frac{13!}{9!} \][/tex]

4. Remember that [tex]\( 13! = 13 \times 12 \times 11 \times 10 \times 9! \)[/tex], so [tex]\(\frac{13!}{9!}\)[/tex] simplifies to:
[tex]\[ \frac{13 \times 12 \times 11 \times 10 \times 9!}{9!} = 13 \times 12 \times 11 \times 10 \][/tex]

5. Perform the multiplications:
[tex]\[ 13 \times 12 = 156 \][/tex]
[tex]\[ 156 \times 11 = 1716 \][/tex]
[tex]\[ 1716 \times 10 = 17160 \][/tex]

So, the value of [tex]\(\frac{n!}{(n-r)!}\)[/tex] when [tex]\( n = 13 \)[/tex] and [tex]\( r = 4 \)[/tex] is:

[tex]\[ \boxed{17160} \][/tex]

### Part (b)
We need to evaluate [tex]\(\frac{n!}{r!(n-r)!}\)[/tex].

1. Again, substitute the values of [tex]\( n \)[/tex] and [tex]\( r \)[/tex]:
[tex]\[ n = 13, \quad r = 4 \][/tex]

2. Calculate [tex]\( n - r \)[/tex]:
[tex]\[ n - r = 13 - 4 = 9 \][/tex]

3. The expression simplifies to:
[tex]\[ \frac{13!}{4! \cdot 9!} \][/tex]

4. We already know from Part (a) that:
[tex]\[ \frac{13!}{9!} = 13 \times 12 \times 11 \times 10 = 17160 \][/tex]

5. Now, find the factorial of [tex]\( r = 4 \)[/tex]:
[tex]\[ 4! = 4 \times 3 \times 2 \times 1 = 24 \][/tex]

6. Divide the result from Part (a) by [tex]\( r! \)[/tex]:
[tex]\[ \frac{17160}{24} \][/tex]

7. Perform the division:
[tex]\[ 17160 \div 24 = 715 \][/tex]

So, the value of [tex]\(\frac{n!}{r!(n-r)!}\)[/tex] when [tex]\( n = 13 \)[/tex] and [tex]\( r = 4 \)[/tex] is:

[tex]\[ \boxed{715} \][/tex]