Construct a truth table for the statement [tex]p \leftrightarrow (q \vee p)[/tex].

Complete the truth table.

\begin{tabular}{|c|c|c|c|}
\hline
[tex]$p$[/tex] & [tex]$q$[/tex] & [tex]$q \vee p$[/tex] & [tex]$p \leftrightarrow (q \vee p)$[/tex] \\
\hline
[tex]$T$[/tex] & [tex]$T$[/tex] & [tex]$T$[/tex] & [tex]$T$[/tex] \\
\hline
[tex]$T$[/tex] & [tex]$F$[/tex] & [tex]$T$[/tex] & [tex]$T$[/tex] \\
\hline
[tex]$F$[/tex] & [tex]$T$[/tex] & [tex]$T$[/tex] & [tex]$F$[/tex] \\
\hline
[tex]$F$[/tex] & [tex]$F$[/tex] & [tex]$F$[/tex] & [tex]$T$[/tex] \\
\hline
\end{tabular}



Answer :

To construct a truth table for the statement [tex]\( p \leftrightarrow (q \vee p) \)[/tex], let's start by breaking it down step-by-step.

1. Identify all possible truth values for [tex]\( p \)[/tex] and [tex]\( q \)[/tex]:
- Each variable can either be True (T) or False (F).
- This gives us 4 combinations to consider: (T, T), (T, F), (F, T), (F, F).

2. Calculate [tex]\( q \vee p \)[/tex] for each combination:
- The expression [tex]\( q \vee p \)[/tex] (q OR p) is True if at least one of [tex]\( q \)[/tex] or [tex]\( p \)[/tex] is True.

3. Calculate [tex]\( p \leftrightarrow (q \vee p) \)[/tex]:
- The expression [tex]\( p \leftrightarrow (q \vee p) \)[/tex] (p if and only if [tex]\( q \vee p \)[/tex]):
- It is True if both sides of the equivalence have the same truth value (both True or both False).

Let's fill in the truth table step-by-step:

[tex]\[ \begin{array}{|c|c|c|c|} \hline p & q & q \vee p & p \leftrightarrow (q \vee p) \\ \hline T & T & \text{True} & \text{True} \\ T & F & \text{True} & \text{True} \\ F & T & \text{True} & \text{False} \\ F & F & \text{False} & \text{True} \\ \hline \end{array} \][/tex]

Explanation:

- First Row: [tex]\( p = T \)[/tex], [tex]\( q = T \)[/tex]
- [tex]\( q \vee p \)[/tex] = True (since both are True)
- [tex]\( p \leftrightarrow (q \vee p) \)[/tex] = True (since both are True)

- Second Row: [tex]\( p = T \)[/tex], [tex]\( q = F \)[/tex]
- [tex]\( q \vee p \)[/tex] = True (since p is True)
- [tex]\( p \leftrightarrow (q \vee p) \)[/tex] = True (since both are True)

- Third Row: [tex]\( p = F \)[/tex], [tex]\( q = T \)[/tex]
- [tex]\( q \vee p \)[/tex] = True (since q is True)
- [tex]\( p \leftrightarrow (q \vee p) \)[/tex] = False (since p is False and [tex]\( q \vee p \)[/tex] is True)

- Fourth Row: [tex]\( p = F \)[/tex], [tex]\( q = F \)[/tex]
- [tex]\( q \vee p \)[/tex] = False (since both are False)
- [tex]\( p \leftrightarrow (q \vee p) \)[/tex] = True (since both are False)

Complete truth table:

[tex]\[ \begin{array}{|c|c|c|c|} \hline p & q & q \vee p & p \leftrightarrow (q \vee p) \\ \hline T & T & \text{True} & \text{True} \\ T & F & \text{True} & \text{True} \\ F & T & \text{True} & \text{False} \\ F & F & \text{False} & \text{True} \\ \hline \end{array} \][/tex]