Write the equation of a line in standard form that has [tex]$x$[/tex]-intercept [tex]$(-P, 0)$[/tex] and [tex]$y$[/tex]-intercept [tex]$(0, R)$[/tex].

A. [tex]R x - P y = -P R[/tex]

B. [tex]R x + P y = P R[/tex]

C. [tex]P x - R y = -P R[/tex]

D. [tex]P x - R y = P R[/tex]



Answer :

To find the equation of a line given its [tex]\( x \)[/tex]-intercept and [tex]\( y \)[/tex]-intercept, we can use the intercept form of the line equation.

1. Identify the intercepts:
- The [tex]\( x \)[/tex]-intercept is [tex]\((-P, 0)\)[/tex].
- The [tex]\( y \)[/tex]-intercept is [tex]\((0, R)\)[/tex].

2. Use the intercept form of the line equation:
The intercept form of the line equation is given by:
[tex]\[ \frac{x}{x\text{-intercept}} + \frac{y}{y\text{-intercept}} = 1 \][/tex]
Plugging in the intercepts [tex]\((-P)\)[/tex] for the [tex]\( x \)[/tex]-intercept and [tex]\( R \)[/tex] for the [tex]\( y \)[/tex]-intercept:
[tex]\[ \frac{x}{-P} + \frac{y}{R} = 1 \][/tex]

3. Simplify the equation:
To eliminate the fractions, we can multiply the entire equation by [tex]\(-P \times R\)[/tex]:
[tex]\[ -P \times R \left(\frac{x}{-P} + \frac{y}{R}\right) = -P \times R \times 1 \][/tex]

4. Clearing the denominators:
When we distribute [tex]\(-P \times R\)[/tex] within the parentheses, we get:
[tex]\[ R x - P y = -P R \][/tex]

5. Compare with given choices:
We compare this derived equation with the provided options:

- [tex]\(R x - P y = -P R\)[/tex]
- [tex]\(R x + P y = P R\)[/tex]
- [tex]\(P x - R y = -P R\)[/tex]
- [tex]\(P x - R y = P R\)[/tex]

The first option exactly matches [tex]\(R x - P y = -P R\)[/tex].

Therefore, the correct equation of the line in standard form is:
[tex]\[ R x - P y = -P R \][/tex]

So, the correct choice is:
[tex]\[ \boxed{1} \][/tex]