Consider the function [tex]f(x) = \sqrt{4 - x} + 6[/tex] for the domain [tex](-\infty, 4][/tex].

a) Find [tex]f^{-1}(x)[/tex], where [tex]f^{-1}[/tex] is the inverse of [tex]f[/tex].

b) State the domain of [tex]f^{-1}[/tex] in interval notation.



Answer :

To find the inverse [tex]\( f^{-1}(x) \)[/tex] of the function [tex]\( f(x) = \sqrt{4 - x} + 6 \)[/tex] and its domain, let's follow these steps:

1. Express the function in terms of [tex]\( y \)[/tex]:
[tex]\[ y = \sqrt{4 - x} + 6 \][/tex]

2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ y - 6 = \sqrt{4 - x} \][/tex]

3. Square both sides to eliminate the square root:
[tex]\[ (y - 6)^2 = 4 - x \][/tex]

4. Isolate [tex]\( x \)[/tex]:
[tex]\[ x = 4 - (y - 6)^2 \][/tex]

5. Rewrite the expression with [tex]\( x \)[/tex] as the dependent variable:
[tex]\[ f^{-1}(x) = 4 - (x - 6)^2 \][/tex]

Now, we have found the inverse function:
[tex]\[ f^{-1}(x) = 4 - (x - 6)^2 \][/tex]

Next, we need to determine the domain of [tex]\( f^{-1}(x) \)[/tex]. The domain of [tex]\( f(x) \)[/tex] was given as [tex]\( (-\infty, 4] \)[/tex]. The range of [tex]\( f(x) \)[/tex] will be the domain of [tex]\( f^{-1}(x) \)[/tex]:

- When [tex]\( x = 4 \)[/tex], [tex]\( f(4) = \sqrt{4-4} + 6 = 6 \)[/tex].

- As [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex], [tex]\( \sqrt{4-x} \)[/tex] becomes very large. Hence [tex]\( f(x) \)[/tex] becomes very large too, approaching [tex]\( +\infty \)[/tex].

Therefore, the range of [tex]\( f(x) \)[/tex] is [tex]\([6, +\infty)\)[/tex], which means the domain of [tex]\( f^{-1}(x) \)[/tex] is also [tex]\([6, +\infty)\)[/tex].

Hence, the inverse function is:
[tex]\[ f^{-1}(x) = 4 - (x - 6)^2 \][/tex]
And the domain of [tex]\( f^{-1} \)[/tex] in interval notation is:
[tex]\[ [6, +\infty) \][/tex]