If the determinant of this matrix is [tex]\(-19\)[/tex], what is the value of [tex]\(a\)[/tex]?

[tex]\[
\left[\begin{array}{ccc}
-6 & 7 & 1 \\
a & -3 & 4 \\
-6 & 4 & -3
\end{array}\right]
\][/tex]



Answer :

To determine the value of [tex]\( a \)[/tex] given that the determinant of the matrix below is [tex]\(-19\)[/tex]:

[tex]\[ \begin{pmatrix} -6 & 7 & 1 \\ a & -3 & 4 \\ -6 & 4 & -3 \end{pmatrix} \][/tex]

we need to follow these steps:

1. Construct the Matrix:

Write down the matrix for clarity:

[tex]\[ M = \begin{pmatrix} -6 & 7 & 1 \\ a & -3 & 4 \\ -6 & 4 & -3 \end{pmatrix} \][/tex]

2. Calculate the Determinant:

To find the determinant of [tex]\( M \)[/tex], we will use the cofactor expansion along the first row:

[tex]\[ \text{det}(M) = -6 \begin{vmatrix} -3 & 4 \\ 4 & -3 \end{vmatrix} - 7 \begin{vmatrix} a & 4 \\ -6 & -3 \end{vmatrix} + 1 \begin{vmatrix} a & -3 \\ -6 & 4 \end{vmatrix} \][/tex]

3. Evaluate each 2x2 Minor:

Calculate the determinants of each 2x2 minor matrix:

[tex]\[ \det \begin{vmatrix} -3 & 4 \\ 4 & -3 \end{vmatrix} = (-3)(-3) - (4)(4) = 9 - 16 = -7 \][/tex]

[tex]\[ \det \begin{vmatrix} a & 4 \\ -6 & -3 \end{vmatrix} = (a)(-3) - (4)(-6) = -3a + 24 \][/tex]

[tex]\[ \det \begin{vmatrix} a & -3 \\ -6 & 4 \end{vmatrix} = (a)(4) - (-3)(-6) = 4a - 18 \][/tex]

4. Substitute these Minors into the Determinant Formula:

Plug these results back into the cofactor expansion:

[tex]\[ \text{det}(M) = -6(-7) - 7(-3a + 24) + 1(4a - 18) \][/tex]

5. Simplify the Expression:

Simplify this step-by-step:

[tex]\[ \text{det}(M) = 42 + 21a - 168 + 4a - 18 \][/tex]

Combine the like terms:

[tex]\[ \text{det}(M) = 25a - 144 \][/tex]

6. Set the Determinant Equal to -19:

We've been given that:

[tex]\[ 25a - 144 = -19 \][/tex]

7. Solve for [tex]\( a \)[/tex]:

Solve the equation for [tex]\( a \)[/tex] step-by-step:

[tex]\[ 25a - 144 = -19 \][/tex]

Add 144 to both sides:

[tex]\[ 25a = 125 \][/tex]

Divide both sides by 25:

[tex]\[ a = 5 \][/tex]

Therefore, the value of [tex]\( a \)[/tex] is [tex]\( 5 \)[/tex].