11.3.5 Suppose a total of [tex]$n=9$[/tex] measurements are to be taken on a simple linear model, where the [tex]$x_i$[/tex]'s will be set equal to [tex]$1, 2, \ldots, 9$[/tex]. If the variance associated with the [tex]$x y$[/tex]-relationship is known to be 45.0, what is the probability that the estimated slope will be within 1.5 units of the true slope?

11.3.6 Prove the useful computing formula (Equation 11.3.5):
[tex]\[ \sum_{i=1}^n\left(y_i-\hat{\beta}_0-\hat{\beta}_1 x_i\right)^2=\sum_{i=1}^n y_i^2-\hat{\beta}_0 \sum_{i=1}^n y_i-\hat{\beta}_1 \sum_{i=1}^n x_i y_i \][/tex]



Answer :

### Problem 11.3.5: Probability that the Estimated Slope is within 1.5 Units of the True Slope

Given:
- Total number of measurements ([tex]\( n \)[/tex]) = 9
- [tex]\( x_i \)[/tex] values = 1, 2, 3, ..., 9
- Variance ([tex]\( \sigma^2 \)[/tex]) = 45
- Desired range for slope estimate deviation = ±1.5 units

We need to find the probability that the estimated slope [tex]\( \hat{\beta_1} \)[/tex] will be within 1.5 units of the true slope [tex]\( \beta_1 \)[/tex].

Step-by-Step Solution:

1. Calculate the mean of the [tex]\( x_i \)[/tex] values ([tex]\( \bar{x} \)[/tex]):
[tex]\[ \bar{x} = \frac{1 + 2 + \cdots + 9}{9} = \frac{45}{9} = 5 \][/tex]

2. Calculate the sum of squared deviations of [tex]\( x_i \)[/tex]:
[tex]\[ \sum (x_i - \bar{x})^2 = \sum_{i=1}^{9} (x_i - 5)^2 \][/tex]
The values are:
[tex]\[ (1-5)^2 = 16, \ (2-5)^2 = 9, \ (3-5)^2 = 4, \ (4-5)^2 = 1, \ (5-5)^2 = 0, \ (6-5)^2 = 1, \ (7-5)^2 = 4, \ (8-5)^2 = 9, \ (9-5)^2 = 16 \][/tex]
Therefore,
[tex]\[ \sum (x_i - \bar{x})^2 = 16 + 9 + 4 + 1 + 0 + 1 + 4 + 9 + 16 = 60 \][/tex]

3. Calculate the standard error of the slope ([tex]\( \text{SE}(\hat{\beta_1}) \)[/tex]):
[tex]\[ \text{SE}(\hat{\beta_1}) = \frac{\sigma}{\sqrt{\sum (x_i - \bar{x})^2}} = \frac{\sqrt{45}}{\sqrt{60}} = \frac{6.7082}{7.745} \approx 0.866 \][/tex]

4. Calculate the z-scores for the lower and upper bounds:
- Lower bound deviation for the slope = -1.5
- Upper bound deviation for the slope = +1.5

[tex]\[ z_{\text{lower}} = \frac{-1.5}{\text{SE}(\hat{\beta_1})} \approx \frac{-1.5}{0.866} \approx -1.73 \][/tex]
[tex]\[ z_{\text{upper}} = \frac{1.5}{\text{SE}(\hat{\beta_1})} \approx \frac{1.5}{0.866} \approx 1.73 \][/tex]

5. Use the cumulative distribution function (CDF) for the normal distribution to find the probability:
[tex]\[ P(-1.73 \le z \le 1.73) \][/tex]

Using the standard normal distribution table or a tool like a cumulative distribution function:
[tex]\[ P(z \le 1.73) - P(z \le -1.73) \approx 0.9582 - 0.0418 \approx 0.9164 \][/tex]

Therefore, the probability that the estimated slope is within 1.5 units of the true slope is approximately 0.9164 or 91.64%.

### Problem 11.3.6: Prove the Useful Computing Formula

The formula to prove is:
[tex]\[ \sum_{i=1}^n \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i\right)^2 = \sum_{i=1}^n y_i^2 - \hat{\beta}_0 \sum_{i=1}^n y_i - \hat{\beta}_1 \sum_{i=1}^n x_i y_i \][/tex]

Proof:

1. Define the sum of squared errors:
[tex]\[ \text{SS}_\text{res} = \sum_{i=1}^n \left(y_i - \hat{y}_i\right)^2 = \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 \][/tex]

2. By expanding:
[tex]\[ \text{SS}_\text{res} = \sum_{i=1}^n \left(y_i^2 - 2y_i(\hat{\beta}_0 + \hat{\beta}_1 x_i) + (\hat{\beta}_0 + \hat{\beta}_1 x_i)^2\right) \][/tex]

3. Separate and simplify each term:
[tex]\[ \text{SS}_\text{res} = \sum_{i=1}^n y_i^2 - 2 \hat{\beta}_0 \sum_{i=1}^n y_i - 2 \hat{\beta}_1 \sum_{i=1}^n x_i y_i + \hat{\beta}_0^2 \sum_{i=1}^n 1 + 2 \hat{\beta}_0 \hat{\beta}_1 \sum_{i=1}^n x_i + \hat{\beta}_1^2 \sum_{i=1}^n x_i^2 \][/tex]

4. Use the normal equations:
- Normal equation for [tex]\( \hat{\beta}_0 \)[/tex]:
[tex]\[ n \hat{\beta}_0 + \hat{\beta}_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i \][/tex]
- Normal equation for [tex]\( \hat{\beta}_1 \)[/tex]:
[tex]\[ \hat{\beta}_0 \sum_{i=1}^n x_i + \hat{\beta}_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i \][/tex]

5. Substitute these values back:
[tex]\[ \text{SS}_\text{res} = \sum_{i=1}^n y_i^2 - \hat{\beta}_0 \sum_{i=1}^n y_i - \hat{\beta}_1 \sum_{i=1}^n x_i y_i \][/tex]

Therefore, we have proved that:
[tex]\[ \sum_{i=1}^n \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i\right)^2=\sum_{i=1}^n y_i^2-\hat{\beta}_0 \sum_{i=1}^n y_i-\hat{\beta}_1 \sum_{i=1}^n x_i y_i \][/tex]
This completes the proof.