Select the correct answer.

This table models function [tex]\( m \)[/tex].

[tex]\[
\begin{array}{|c|c|c|c|c|}
\hline
x & -2 & 0 & 2 & 4 \\
\hline
m(x) & 4 & -6 & 0 & 70 \\
\hline
\end{array}
\][/tex]

Function [tex]\( n \)[/tex] represents a cubic function that passes through the points [tex]\((-1,0)\)[/tex] and [tex]\((0,2)\)[/tex]. Which statement is true?

A. The [tex]\( y \)[/tex]-intercept of [tex]\( m \)[/tex] is less than the [tex]\( y \)[/tex]-intercept of [tex]\( n \)[/tex].

B. The [tex]\( y \)[/tex]-intercept of [tex]\( m \)[/tex] is equal to the [tex]\( y \)[/tex]-intercept of [tex]\( n \)[/tex].

C. The [tex]\( y \)[/tex]-intercept of [tex]\( m \)[/tex] is greater than the [tex]\( y \)[/tex]-intercept of [tex]\( n \)[/tex].

D. The [tex]\( y \)[/tex]-intercept of [tex]\( m \)[/tex] is not given.



Answer :

To determine the correct answer, follow these steps:

1. Identify the [tex]\( y \)[/tex]-intercept of function [tex]\( m \)[/tex] from the table:
The table provided shows values of [tex]\( m(x) \)[/tex] for different [tex]\( x \)[/tex]. The [tex]\( y \)[/tex]-intercept of a function is the value of the function at [tex]\( x = 0 \)[/tex].
- From the table, when [tex]\( x = 0 \)[/tex], [tex]\( m(x) = -6 \)[/tex].
- Therefore, the [tex]\( y \)[/tex]-intercept of [tex]\( m \)[/tex] is [tex]\( -6 \)[/tex].

2. Identify the [tex]\( y \)[/tex]-intercept of function [tex]\( n \)[/tex]:
Function [tex]\( n \)[/tex] is a cubic function that passes through the point [tex]\( (0, 2) \)[/tex].
- The [tex]\( y \)[/tex]-intercept of a function is the value of the function at [tex]\( x = 0 \)[/tex].
- Given point [tex]\( (0, 2) \)[/tex] indicates that when [tex]\( x = 0 \)[/tex], [tex]\( n(x) = 2 \)[/tex].
- Therefore, the [tex]\( y \)[/tex]-intercept of [tex]\( n \)[/tex] is [tex]\( 2 \)[/tex].

3. Compare the [tex]\( y \)[/tex]-intercepts of [tex]\( m \)[/tex] and [tex]\( n \)[/tex]:
- The [tex]\( y \)[/tex]-intercept of [tex]\( m \)[/tex] is [tex]\( -6 \)[/tex].
- The [tex]\( y \)[/tex]-intercept of [tex]\( n \)[/tex] is [tex]\( 2 \)[/tex].

Since [tex]\( -6 \)[/tex] (the [tex]\( y \)[/tex]-intercept of [tex]\( m \)[/tex]) is less than [tex]\( 2 \)[/tex] (the [tex]\( y \)[/tex]-intercept of [tex]\( n \)[/tex]), we conclude that:

A. The [tex]\( y \)[/tex]-intercept of [tex]\( m \)[/tex] is less than the [tex]\( y \)[/tex]-intercept of [tex]\( n \)[/tex].

Thus, the correct answer is:
A. The [tex]\( y \)[/tex]-intercept of [tex]\( m \)[/tex] is less than the [tex]\( y \)[/tex]-intercept of [tex]\( n \)[/tex].