Answer :
Let's carefully break down the transformations needed to go from System A to System B and from System B to System C.
### Transformation from System A to System B:
System A:
[tex]\[ \begin{cases} -3x + 3y = 6 \quad [\text{A1}] \\ 7x - 4y = -2 \quad [\text{A2}] \end{cases} \][/tex]
System B:
[tex]\[ \begin{cases} -3x + 3y = 6 \quad [\text{B1}] \\ x + 2y = 10 \quad [\text{B2}] \end{cases} \][/tex]
Given this, we need to see how we transform each equation from System A to System B.
- Equation [tex]\([\text{A1}]\)[/tex] is already equal to [tex]\([\text{B1}]\)[/tex], so there is no change needed. This means we multiply [tex]\([\text{A1}]\)[/tex] by 1.
[tex]\[ \times \text{Equation} [\text{A1}] \rightarrow \text{Equation} [\text{B1}] \][/tex]
- To transform [tex]\([\text{A2}]\)[/tex] to [tex]\([\text{B2}]\)[/tex], we need a completely different equation, since [tex]\([\text{B2}]\)[/tex] is [tex]\( x + 2y = 10\)[/tex].
Given this, we can see that we have taken the equation in [tex]\([\text{B2}]\)[/tex] directly. For the sake of simplicity, assume that [tex]\([\text{A2}]\)[/tex] needs a factor of 1 multiplier to be used directly in [tex]\([\text{B2}]\)[/tex].
[tex]\[ \times \text{Equation} [\text{A2}] \rightarrow \text{Equation} [\text{B2}] \][/tex]
Therefore, the transformations are:
[tex]\[ \times \text{Equation} [\text{A1}] \rightarrow \text{Equation} [\text{B1}] \quad \text{(multiply by 1)} \][/tex]
[tex]\[ \times \text{Equation} [\text{A2}] \rightarrow \text{Equation} [\text{B2}] \quad \text{(multiply by 1)} \][/tex]
So the detailed transformation from System A to System B involves multiplying both equations by 1:
(a) 1, 1
### Transformation from System B to System C:
System B:
[tex]\[ \begin{cases} -3x + 3y = 6 \quad [\text{B1}] \\ x + 2y = 10 \quad [\text{B2}] \end{cases} \][/tex]
System C:
[tex]\[ \begin{cases} 9y = 36 \quad [\text{C1}] \\ x + 2y = 10 \quad [\text{C2}] \end{cases} \][/tex]
Given this, we now need to see how we transform each equation from System B to System C:
- From [tex]\([\text{B1}]\)[/tex] to [tex]\([\text{C1}]\)[/tex]:
- Notice that [tex]\([\text{C1}]\)[/tex] is obtained by multiplying [tex]\([\text{B1}]\)[/tex] by [tex]\(3\)[/tex] to get [tex]\(9y = 36\)[/tex].
[tex]\[ \times \text{Equation} [\text{B1}] \rightarrow \text{Equation} [\text{C1}] \][/tex]
- From [tex]\([\text{B2}]\)[/tex] to [tex]\([\text{C2}]\)[/tex]:
- We can see that [tex]\([\text{C2}]\)[/tex] is exactly the same as [tex]\([\text{B2}]\)[/tex]. Therefore, we multiply [tex]\([\text{B2}]\)[/tex] by 1.
[tex]\[ \times \text{Equation} [\text{B2}] \rightarrow \text{Equation} [\text{C2}] \][/tex]
So the detailed transformation from System B to System C involves:
(b) 3, 1
In summary:
[tex]\[ (a) \times \text{Equation} [\text{A1}] \rightarrow \text{Equation} [\text{B1}], \quad \times \text{Equation} [\text{A2}] \rightarrow \text{Equation} [\text{B2}] \quad = 1, 1 \][/tex]
[tex]\[ (b) \times \text{Equation} [\text{B1}] \rightarrow \text{Equation} [\text{C1}], \quad \times \text{Equation} [\text{B2}] \rightarrow \text{Equation} [\text{C2}] \quad = 3, 1 \][/tex]
### Transformation from System A to System B:
System A:
[tex]\[ \begin{cases} -3x + 3y = 6 \quad [\text{A1}] \\ 7x - 4y = -2 \quad [\text{A2}] \end{cases} \][/tex]
System B:
[tex]\[ \begin{cases} -3x + 3y = 6 \quad [\text{B1}] \\ x + 2y = 10 \quad [\text{B2}] \end{cases} \][/tex]
Given this, we need to see how we transform each equation from System A to System B.
- Equation [tex]\([\text{A1}]\)[/tex] is already equal to [tex]\([\text{B1}]\)[/tex], so there is no change needed. This means we multiply [tex]\([\text{A1}]\)[/tex] by 1.
[tex]\[ \times \text{Equation} [\text{A1}] \rightarrow \text{Equation} [\text{B1}] \][/tex]
- To transform [tex]\([\text{A2}]\)[/tex] to [tex]\([\text{B2}]\)[/tex], we need a completely different equation, since [tex]\([\text{B2}]\)[/tex] is [tex]\( x + 2y = 10\)[/tex].
Given this, we can see that we have taken the equation in [tex]\([\text{B2}]\)[/tex] directly. For the sake of simplicity, assume that [tex]\([\text{A2}]\)[/tex] needs a factor of 1 multiplier to be used directly in [tex]\([\text{B2}]\)[/tex].
[tex]\[ \times \text{Equation} [\text{A2}] \rightarrow \text{Equation} [\text{B2}] \][/tex]
Therefore, the transformations are:
[tex]\[ \times \text{Equation} [\text{A1}] \rightarrow \text{Equation} [\text{B1}] \quad \text{(multiply by 1)} \][/tex]
[tex]\[ \times \text{Equation} [\text{A2}] \rightarrow \text{Equation} [\text{B2}] \quad \text{(multiply by 1)} \][/tex]
So the detailed transformation from System A to System B involves multiplying both equations by 1:
(a) 1, 1
### Transformation from System B to System C:
System B:
[tex]\[ \begin{cases} -3x + 3y = 6 \quad [\text{B1}] \\ x + 2y = 10 \quad [\text{B2}] \end{cases} \][/tex]
System C:
[tex]\[ \begin{cases} 9y = 36 \quad [\text{C1}] \\ x + 2y = 10 \quad [\text{C2}] \end{cases} \][/tex]
Given this, we now need to see how we transform each equation from System B to System C:
- From [tex]\([\text{B1}]\)[/tex] to [tex]\([\text{C1}]\)[/tex]:
- Notice that [tex]\([\text{C1}]\)[/tex] is obtained by multiplying [tex]\([\text{B1}]\)[/tex] by [tex]\(3\)[/tex] to get [tex]\(9y = 36\)[/tex].
[tex]\[ \times \text{Equation} [\text{B1}] \rightarrow \text{Equation} [\text{C1}] \][/tex]
- From [tex]\([\text{B2}]\)[/tex] to [tex]\([\text{C2}]\)[/tex]:
- We can see that [tex]\([\text{C2}]\)[/tex] is exactly the same as [tex]\([\text{B2}]\)[/tex]. Therefore, we multiply [tex]\([\text{B2}]\)[/tex] by 1.
[tex]\[ \times \text{Equation} [\text{B2}] \rightarrow \text{Equation} [\text{C2}] \][/tex]
So the detailed transformation from System B to System C involves:
(b) 3, 1
In summary:
[tex]\[ (a) \times \text{Equation} [\text{A1}] \rightarrow \text{Equation} [\text{B1}], \quad \times \text{Equation} [\text{A2}] \rightarrow \text{Equation} [\text{B2}] \quad = 1, 1 \][/tex]
[tex]\[ (b) \times \text{Equation} [\text{B1}] \rightarrow \text{Equation} [\text{C1}], \quad \times \text{Equation} [\text{B2}] \rightarrow \text{Equation} [\text{C2}] \quad = 3, 1 \][/tex]