Determine the equilibrium constant and whether the reaction favors reactants, products, or neither at this temperature. The equilibrium concentrations for the reaction between [tex]\(SO_2\)[/tex] and [tex]\(O_2\)[/tex] to form [tex]\(SO_3\)[/tex] at a certain temperature are given in the table below.

[tex]\[ O_2(g) + 2 SO_2(g) \rightleftarrows 2 SO_3(g) \][/tex]

\begin{tabular}{|c|c|c|}
\hline
[tex]$\left[O_2\right]$[/tex] & [tex]$\left[SO_2\right]$[/tex] & [tex]$\left[SO_3\right]$[/tex] \\
\hline
0.024 M & 0.015 M & 0.26 M \\
\hline
\end{tabular}

A. [tex]\(K = 1.3 \times 10^{-3}\)[/tex]; reactant favored

B. [tex]\(K = 1.3 \times 10^{-3}\)[/tex]; product favored

C. [tex]\(K = 1.3 \times 10^4\)[/tex]; reactant favored

D. [tex]\(K = 1.3 \times 10^4\)[/tex]; product favored



Answer :

To determine the equilibrium constant [tex]\( K \)[/tex] for the given reaction [tex]\( O_2(g) + 2 SO_2(g) \rightleftarrows 2 SO_3(g) \)[/tex], we will use the equilibrium concentrations provided in the table.

The general formula for the equilibrium constant [tex]\( K \)[/tex] for a reaction of the form:
[tex]\[ aA + bB \rightleftarrows cC + dD \][/tex]
is given by:
[tex]\[ K = \frac{[C]^c[D]^d}{[A]^a[B]^b} \][/tex]

For our specific reaction:
[tex]\[ O_2(g) + 2 SO_2(g) \rightleftarrows 2 SO_3(g) \][/tex]

The equilibrium constant expression [tex]\( K \)[/tex] is:
[tex]\[ K = \frac{[SO_3]^2}{[SO_2]^2 [O_2]} \][/tex]

From the given equilibrium concentrations:
- [tex]\([ O_2 ] = 0.024 \, \text{M}\)[/tex]
- [tex]\([ SO_2 ] = 0.015 \, \text{M}\)[/tex]
- [tex]\([ SO_3 ] = 0.26 \, \text{M}\)[/tex]

Substitute these values into the equilibrium constant expression:
[tex]\[ K = \frac{(0.26)^2}{(0.015)^2 \cdot 0.024} \][/tex]

Now, let's compute each part of the expression:
1. Calculate the numerator [tex]\([SO_3]^2\)[/tex]:
[tex]\[ (0.26)^2 = 0.0676 \][/tex]

2. Calculate the denominator [tex]\([SO_2]^2 [O_2]\)[/tex]:
[tex]\[ (0.015)^2 = 0.000225 \][/tex]
[tex]\[ 0.000225 \cdot 0.024 = 0.0000054 \][/tex]

3. Divide the numerator by the denominator:
[tex]\[ K = \frac{0.0676}{0.0000054} = 12518.51851851852 \][/tex]

Thus, the equilibrium constant [tex]\( K \approx 1.3 \times 10^4 \)[/tex].

To determine whether the reaction is reactant favored or product favored, we compare [tex]\(K\)[/tex] to 1:
- If [tex]\( K < 1 \)[/tex], the reaction is reactant favored.
- If [tex]\( K > 1 \)[/tex], the reaction is product favored.

Since [tex]\( K = 1.3 \times 10^4 \)[/tex] is much larger than 1, the reaction is product favored.

Therefore, the correct answer is:
[tex]\[ \boxed{\text{D. } K = 1.3 \times 10^4; \text{ product favored}} \][/tex]