Fill in the blanks to rewrite the expression [tex]$(2x + 5)(x - 4)$[/tex] in standard form.

Rewrite in standard form:

[tex]ax^2 + bx + c[/tex]

[tex](2x + 5)(x - 4) = \_\_ x^2 + \_\_ x + \_\_ \]



Answer :

To rewrite the expression [tex]\((2x + 5)(x - 4)\)[/tex] in standard form [tex]\(ax^2 + bx + c\)[/tex]:

Start by expanding the expression step-by-step:

[tex]\((2x + 5)(x - 4)\)[/tex]

First, distribute [tex]\(2x\)[/tex] to both terms inside the parentheses [tex]\((x - 4)\)[/tex]:

[tex]\[2x \cdot x = 2x^2\][/tex]
[tex]\[2x \cdot (-4) = -8x\][/tex]

Next, distribute [tex]\(5\)[/tex] to both terms inside the parentheses [tex]\((x - 4)\)[/tex]:

[tex]\[5 \cdot x = 5x\][/tex]
[tex]\[5 \cdot (-4) = -20\][/tex]

Now, combine all the results:

[tex]\[2x^2 - 8x + 5x - 20\][/tex]

Combine the like terms [tex]\(-8x\)[/tex] and [tex]\(5x\)[/tex]:

[tex]\[2x^2 - 3x - 20\][/tex]

So, the standard form [tex]\(ax^2 + bx + c\)[/tex] is:

[tex]\[2x^2 - 3x - 20\][/tex]

Therefore,

Standard form: [tex]\(ax^2 + bx + c\)[/tex] is:

[tex]\[2x^2 - 3x - 20\][/tex]

Hence, the coefficients are [tex]\(a = 2\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = -20\)[/tex].

Now you can fill in the blanks from the rewritten form:

[tex]\[ \begin{array}{l} (2 x + 5)(x - 4) \\ \text { Rewrite in standard form: } \\ 2x^2 - 3x - 20 \\ \end{array} \][/tex]

So,

[tex]\[ ax^2 = 2x^2, \quad bx = -3x, \quad c = -20 \][/tex]