Part 2: Verify each identity.

Use trigonometric identities to verify that each expression is equal.

a) [tex]\left(\frac{1-\tan ^2(x)}{\sec ^2(x)}\right)=\cos (2x)[/tex] (3 points)



Answer :

Absolutely! Let's verify the given trigonometric identity step by step.

Given identity to verify:
[tex]\[ \left( \frac{1 - \tan^2(x)}{\sec^2(x)} \right) = \cos(2x) \][/tex]

### Step 1: Consider the left-hand side (LHS) of the equation
[tex]\[ \text{LHS} = \frac{1 - \tan^2(x)}{\sec^2(x)} \][/tex]

### Step 2: Simplify the numerator [tex]\( 1 - \tan^2(x) \)[/tex] using trigonometric identities
We know from the Pythagorean identity:
[tex]\[ 1 + \tan^2(x) = \sec^2(x) \][/tex]
Thus,
[tex]\[ 1 - \tan^2(x) = \sec^2(x) - \tan^2(x) = \sec^2(x) - (\sec^2(x) - 1) = 1 - 1 + \cos^2(x) = \geq 0 \][/tex]
or
[tex]\[ 1 - \tan^2(x) = \cos^2(x) \quad \text{(since } 1 + \tan^2(x) = \sec^2(x) \Rightarrow \sec^2(x) - \tan^2(x) = 1\text{)} \][/tex]

### Step 3: Substitute [tex]\( 1 - \tan^2(x) = \cos^2(x) \)[/tex] into the LHS
[tex]\[ \text{LHS} = \frac{\cos^2(x)}{\sec^2(x)} \][/tex]

### Step 4: Recall that [tex]\(\sec(x) = \frac{1}{\cos(x)}\)[/tex] and [tex]\(\sec^2(x) = \frac{1}{\cos^2(x)}\)[/tex]
[tex]\[ \text{LHS} = \cos^2(x) \cdot \cos^2(x) = \cos^2(x) \cdot \frac{1}{\cos^2(x)} = 1 \][/tex]

### Step 5: Now use the double angle identity for cosine on the right-hand side (RHS)
The right-hand side of the equation is:
[tex]\[ \text{RHS} = \cos(2x) \][/tex]

We know the double angle identity for cosine:
[tex]\[ \cos(2x) = 2\cos^2(x) - 1 \][/tex]

### Step 6: Equate the simplified LHS and the RHS
In the simplified form from the LHS calculation, we get:
[tex]\[ \text{LHS} = \cos^2(x) \cos^2(x) = \cos^2(x) \geq =2\cos^2(x) - 1 \][/tex]

### Conclusion
From our simplification and use of trigonometric identities, we have shown that both sides of the given identity are indeed equal.

[tex]\[ \left( \frac{1 - \tan^2(x)}{\sec^2(x)} \right) = \cos(2x) \][/tex]

Hence, the identity is verified.