A triangle has side lengths measuring [tex]$20 \, \text{cm}$[/tex], [tex]$5 \, \text{cm}$[/tex], and [tex]$n \, \text{cm}$[/tex]. Which describes the possible values of [tex]\( n \)[/tex]?

[tex]\[
\begin{array}{l}
5 \ \textless \ n \ \textless \ 15 \\
5 \ \textless \ n \ \textless \ 20 \\
15 \ \textless \ n \ \textless \ 20 \\
15 \ \textless \ n \ \textless \ 25
\end{array}
\][/tex]



Answer :

To determine the possible values of [tex]\( n \)[/tex] for a triangle with sides measuring [tex]\( 20 \)[/tex] cm, [tex]\( 5 \)[/tex] cm, and [tex]\( n \)[/tex] cm, we need to use the triangle inequality theorem. The theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side.

Let’s apply this theorem to our problem step-by-step:

1. First Inequality:
[tex]\[ a + b > n \implies 20 + 5 > n \implies 25 > n \implies n < 25 \][/tex]

2. Second Inequality:
[tex]\[ a + n > b \implies 20 + n > 5 \implies n > 5 - 20 \][/tex]
Since the value of [tex]\( n \)[/tex] must be positive (because it represents a side length), we actually have:
[tex]\[ 20 + n > 5 \implies n > 5 - 20 \implies n > -15 \][/tex]
However, [tex]\( n \)[/tex] being a positive side length means:
[tex]\[ n > 0 \][/tex]
But we only need the relevant comparison from:
[tex]\[ 20 + n > 5 \implies n > -15 \text{ (this is always true for positive \( n \))} \][/tex]

3. Third Inequality:
[tex]\[ b + n > a \implies 5 + n > 20 \implies n > 20 - 5 \implies n > 15 \][/tex]

Combining these inequalities, we get:
[tex]\[ 15 < n < 25 \][/tex]

Thus, the valid range for [tex]\( n \)[/tex] that satisfies all the conditions of the triangle inequality theorem is:
[tex]\[ 15 < n < 25 \][/tex]

The correct choice from the given options is:
[tex]\[ \boxed{15 < n < 25} \][/tex]