Analyzing Residuals

Shanti wrote the predicted values for a data set using the line of best fit [tex] y = 2.55x - 3.15 [/tex]. She computed two of the residual values.

\begin{tabular}{|c|c|c|c|}
\hline
[tex]$x$[/tex] & Given & Predicted & Residual \\
\hline
1 & -0.7 & -0.6 & -0.1 \\
\hline
2 & 2.3 & 1.95 & 0.35 \\
\hline
3 & 4.1 & 4.5 & [tex]$a$[/tex] \\
\hline
4 & 7.2 & 7.05 & [tex]$b$[/tex] \\
\hline
\end{tabular}

What are the values of [tex]$a$[/tex] and [tex]$b$[/tex]?

A. [tex]$a = 0.4$[/tex] and [tex]$b = -0.15$[/tex]
B. [tex]$a = -0.4$[/tex] and [tex]$b = 0.15$[/tex]
C. [tex]$a = 8.6$[/tex] and [tex]$b = 14.25$[/tex]
D. [tex]$a = -8.6$[/tex] and [tex]$b = -14.25$[/tex]



Answer :

Sure! Let's go through the problem step by step to determine the correct values for [tex]\(a\)[/tex] and [tex]\(b\)[/tex].

### Given Information
1. Shanti's line of best fit equation is [tex]\( y = 2.55x - 3.15 \)[/tex].
2. We are given the following table:

[tex]\[ \begin{array}{|c|c|c|c|} \hline x & \text{Given} & \text{Predicted} & \text{Residual} \\ \hline 1 & -0.7 & -0.6 & -0.1 \\ \hline 2 & 2.3 & 1.95 & 0.35 \\ \hline 3 & 4.1 & 4.5 & a \\ \hline 4 & 7.2 & 7.05 & b \\ \hline \end{array} \][/tex]

### Understanding Residuals
A residual is the difference between the given value (observed value) and the predicted value, which is calculated as:
[tex]\[ \text{Residual} = \text{Given} - \text{Predicted} \][/tex]

### Calculating Residual [tex]\( a \)[/tex]
For [tex]\( x = 3 \)[/tex]:
- Given value: 4.1
- Predicted value: From the line of best fit, [tex]\( y = 2.55(3) - 3.15 = 4.5 \)[/tex]

Thus, the residual [tex]\(a\)[/tex] is:
[tex]\[ a = 4.1 - 4.5 = -0.4 \][/tex]

### Calculating Residual [tex]\( b \)[/tex]
For [tex]\( x = 4 \)[/tex]:
- Given value: 7.2
- Predicted value: From the line of best fit, [tex]\( y = 2.55(4) - 3.15 = 7.05 \)[/tex]

Thus, the residual [tex]\(b\)[/tex] is:
[tex]\[ b = 7.2 - 7.05 = 0.15 \][/tex]

### Conclusion
The correct values for the residuals are:
[tex]\[ a = -0.4 \][/tex]
[tex]\[ b = 0.15 \][/tex]

Therefore, the correct option is:
[tex]\[ \boxed{a = -0.4 \text{ and } b = 0.15} \][/tex]