Answer :
Let's break down each part of the problem step-by-step.
### (a) Times when the height is exactly 125 feet:
We have the height function [tex]\( h(t) = 125 \sin \left(0.157t - \frac{\pi}{2}\right) + 125 \)[/tex].
To find when the seat is exactly 125 feet above the ground, we set [tex]\( h(t) = 125 \)[/tex] and solve for [tex]\( t \)[/tex]:
[tex]\[ 125 \sin \left(0.157t - \frac{\pi}{2}\right) + 125 = 125 \][/tex]
Subtract 125 from both sides:
[tex]\[ 125 \sin \left(0.157t - \frac{\pi}{2}\right) = 0 \][/tex]
Divide by 125:
[tex]\[ \sin \left(0.157t - \frac{\pi}{2}\right) = 0 \][/tex]
The sine function equals zero at integer multiples of [tex]\(\pi\)[/tex]:
[tex]\[ 0.157t - \frac{\pi}{2} = n\pi \][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[ 0.157t = n\pi + \frac{\pi}{2} \][/tex]
[tex]\[ t = \frac{n\pi + \frac{\pi}{2}}{0.157} \][/tex]
[tex]\[ t = \frac{\pi(2n + 1)/2}{0.157} \][/tex]
For the first 40 seconds, the solutions are:
[tex]\[ t = 10 \text{ seconds, and } t = 30 \text{ seconds} \][/tex]
These solutions correspond to when the seat is exactly 125 feet above the ground.
Therefore:
[tex]\[ t = 10, 30 \][/tex]
### (b) Times when the height is exactly 250 feet:
Set [tex]\( h(t) = 250 \)[/tex]:
[tex]\[ 125 \sin \left(0.157t - \frac{\pi}{2}\right) + 125 = 250 \][/tex]
Subtract 125 from both sides:
[tex]\[ 125 \sin \left(0.157t - \frac{\pi}{2}\right) = 125 \][/tex]
Divide by 125:
[tex]\[ \sin \left(0.157t - \frac{\pi}{2}\right) = 1 \][/tex]
The sine function equals 1 at:
[tex]\[ 0.157t - \frac{\pi}{2} = \frac{\pi}{2} + 2k\pi \][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[ 0.157t = \pi + 2k\pi \][/tex]
[tex]\[ t = \frac{\pi(1 + 2k)}{0.157} \][/tex]
For the first 80 seconds, the solution corresponding to these values is:
[tex]\[ t = 20 \text{ seconds} \][/tex]
Thus:
[tex]\[ t = 20 \][/tex]
### (c) Time interval when height is more than 125 feet:
To find when [tex]\( h(t) > 125 \)[/tex]:
[tex]\[ 125 \sin \left(0.157t - \frac{\pi}{2}\right) + 125 > 125 \][/tex]
Subtract 125 from both sides:
[tex]\[ 125 \sin \left(0.157t - \frac{\pi}{2}\right) > 0 \][/tex]
Divide by 125:
[tex]\[ \sin \left(0.157t - \frac{\pi}{2}\right) > 0 \][/tex]
This is true when:
[tex]\[ 0.157t - \frac{\pi}{2} > 0 \][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[ 0.157t > \frac{\pi}{2} \][/tex]
[tex]\[ t > \frac{\pi}{(2 \cdot 0.157)} \][/tex]
For the condition [tex]\( h(t) > 125 \)[/tex]:
[tex]\[ t > 10 \][/tex]
Thus, the interval when the height is more than 125 feet during the first 40 seconds is:
[tex]\[ 10 < t < 40 \][/tex]
So, the interval of [tex]\( t \)[/tex]:
[tex]\[ (10, 40) \][/tex]
### (a) Times when the height is exactly 125 feet:
We have the height function [tex]\( h(t) = 125 \sin \left(0.157t - \frac{\pi}{2}\right) + 125 \)[/tex].
To find when the seat is exactly 125 feet above the ground, we set [tex]\( h(t) = 125 \)[/tex] and solve for [tex]\( t \)[/tex]:
[tex]\[ 125 \sin \left(0.157t - \frac{\pi}{2}\right) + 125 = 125 \][/tex]
Subtract 125 from both sides:
[tex]\[ 125 \sin \left(0.157t - \frac{\pi}{2}\right) = 0 \][/tex]
Divide by 125:
[tex]\[ \sin \left(0.157t - \frac{\pi}{2}\right) = 0 \][/tex]
The sine function equals zero at integer multiples of [tex]\(\pi\)[/tex]:
[tex]\[ 0.157t - \frac{\pi}{2} = n\pi \][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[ 0.157t = n\pi + \frac{\pi}{2} \][/tex]
[tex]\[ t = \frac{n\pi + \frac{\pi}{2}}{0.157} \][/tex]
[tex]\[ t = \frac{\pi(2n + 1)/2}{0.157} \][/tex]
For the first 40 seconds, the solutions are:
[tex]\[ t = 10 \text{ seconds, and } t = 30 \text{ seconds} \][/tex]
These solutions correspond to when the seat is exactly 125 feet above the ground.
Therefore:
[tex]\[ t = 10, 30 \][/tex]
### (b) Times when the height is exactly 250 feet:
Set [tex]\( h(t) = 250 \)[/tex]:
[tex]\[ 125 \sin \left(0.157t - \frac{\pi}{2}\right) + 125 = 250 \][/tex]
Subtract 125 from both sides:
[tex]\[ 125 \sin \left(0.157t - \frac{\pi}{2}\right) = 125 \][/tex]
Divide by 125:
[tex]\[ \sin \left(0.157t - \frac{\pi}{2}\right) = 1 \][/tex]
The sine function equals 1 at:
[tex]\[ 0.157t - \frac{\pi}{2} = \frac{\pi}{2} + 2k\pi \][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[ 0.157t = \pi + 2k\pi \][/tex]
[tex]\[ t = \frac{\pi(1 + 2k)}{0.157} \][/tex]
For the first 80 seconds, the solution corresponding to these values is:
[tex]\[ t = 20 \text{ seconds} \][/tex]
Thus:
[tex]\[ t = 20 \][/tex]
### (c) Time interval when height is more than 125 feet:
To find when [tex]\( h(t) > 125 \)[/tex]:
[tex]\[ 125 \sin \left(0.157t - \frac{\pi}{2}\right) + 125 > 125 \][/tex]
Subtract 125 from both sides:
[tex]\[ 125 \sin \left(0.157t - \frac{\pi}{2}\right) > 0 \][/tex]
Divide by 125:
[tex]\[ \sin \left(0.157t - \frac{\pi}{2}\right) > 0 \][/tex]
This is true when:
[tex]\[ 0.157t - \frac{\pi}{2} > 0 \][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[ 0.157t > \frac{\pi}{2} \][/tex]
[tex]\[ t > \frac{\pi}{(2 \cdot 0.157)} \][/tex]
For the condition [tex]\( h(t) > 125 \)[/tex]:
[tex]\[ t > 10 \][/tex]
Thus, the interval when the height is more than 125 feet during the first 40 seconds is:
[tex]\[ 10 < t < 40 \][/tex]
So, the interval of [tex]\( t \)[/tex]:
[tex]\[ (10, 40) \][/tex]