Answer :

Sure! Let's simplify the given mathematical expression step-by-step.

The expression we have is:
[tex]\[ 23x^2 + 12x^3 + 8 - 34x^3 \][/tex]

### Step 1: Group like terms together
- We group the [tex]\(x^3\)[/tex] terms together: [tex]\(12x^3\)[/tex] and [tex]\(-34x^3\)[/tex].
- We also group the [tex]\(x^2\)[/tex] term: [tex]\(23x^2\)[/tex].
- Finally, we take the constant term: [tex]\(8\)[/tex].

### Step 2: Combine like terms
- For the [tex]\(x^3\)[/tex] terms: [tex]\(12x^3 - 34x^3\)[/tex]
[tex]\[ 12x^3 - 34x^3 = (12 - 34)x^3 = -22x^3 \][/tex]
- The [tex]\(x^2\)[/tex] term remains the same: [tex]\(23x^2\)[/tex].
- The constant term remains the same: [tex]\(8\)[/tex].

### Step 3: Write the simplified expression
Now we combine these simplified terms into a single expression:
[tex]\[ -22x^3 + 23x^2 + 8 \][/tex]

Hence, the simplified expression is:
[tex]\[ -22x^3 + 23x^2 + 8 \][/tex]

This completes the simplification of the given expression.