Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
Calculate the following expression:
[tex]\log _{100 \sqrt{64}}\left(2^3 \times 512^{0 \cdot 1}\right)[/tex]
-----

Response:



Answer :

Let's solve the expression [tex]\(\log_{100 \sqrt{64}} \left(2^3 \times 512^{0.1}\right)\)[/tex] step-by-step.

1. Simplify the expression inside the logarithm:

[tex]\[ 2^3 \times 512^{0.1} \][/tex]

Firstly, notice that [tex]\(512\)[/tex] can be rewritten as a power of 2:

[tex]\[ 512 = 2^9 \][/tex]

Therefore,

[tex]\[ 512^{0.1} = (2^9)^{0.1} = 2^{9 \times 0.1} = 2^{0.9} \][/tex]

Now, substituting this back into the original expression:

[tex]\[ 2^3 \times 2^{0.9} = 2^{3+0.9} = 2^{3.9} \][/tex]


2. Simplify the base of the logarithm:

The base is given as [tex]\(100 \sqrt{64}\)[/tex].

We know that [tex]\(\sqrt{64} = 8\)[/tex],

So,

[tex]\[ 100 \sqrt{64} = 100 \times 8 = 800 \][/tex]

3. Rewrite the logarithm:

Now, our expression simplifies to:

[tex]\[ \log_{800} \left(2^{3.9}\right) \][/tex]

4. Using the change of base formula:

The change of base formula for logarithms is:

[tex]\[ \log_b(a) = \frac{\log(a)}{\log(b)} \][/tex]

Here, [tex]\(a = 2^{3.9}\)[/tex] and [tex]\(b = 800\)[/tex].

So,

[tex]\[ \log_{800} \left(2^{3.9}\right) = \frac{\log(2^{3.9})}{\log(800)} \][/tex]

5. Simplifying the numerator [tex]\(\log(2^{3.9})\)[/tex]:

We know from the properties of logarithms:

[tex]\[ \log(2^{3.9}) = 3.9 \cdot \log(2) \][/tex]

6. Calculate the value inside the logarithm:

The value of [tex]\(2^{3.9}\)[/tex] is approximately 14.929:

[tex]\[ 2^{3.9} \approx 14.93 \][/tex]

7. Compute the logarithms:

Given the result from calculations:

[tex]\[ \log(14.929) \approx 1.174 \][/tex]

[tex]\[ \log(800) \approx 2.905 \][/tex]

8. Combine the results together:

Finally:

[tex]\[ \frac{\log(14.929)}{\log(800)} = \frac{1.174}{2.905} \approx 0.404 \][/tex]

So, the value of [tex]\(\log_{800} \left(2^{3.9}\right)\)[/tex] is approximately 0.404.

Hence,

[tex]\[ \log_{100 \sqrt{64}}\left(2^3 \times 512^{0.1}\right) \approx 0.404 \][/tex]

Therefore, the value of the given logarithmic expression is approximately [tex]\(0.404\)[/tex].