Certainly! Let's break down the expression step-by-step:
We have the expression [tex]\((18)^{\frac{1}{3}} \times (768)^{\frac{1}{3}}\)[/tex].
### Step 1: Evaluate [tex]\((18)^{\frac{1}{3}}\)[/tex]
The exponent [tex]\(\frac{1}{3}\)[/tex] represents the cube root. So, we need to find the cube root of 18. The cube root of 18 is approximately:
[tex]\[
(18)^{\frac{1}{3}} \approx 2.6207413942088964
\][/tex]
### Step 2: Evaluate [tex]\((768)^{\frac{1}{3}}\)[/tex]
Similarly, we need to find the cube root of 768. The cube root of 768 is approximately:
[tex]\[
(768)^{\frac{1}{3}} \approx 9.157713940426653
\][/tex]
### Step 3: Multiply the results
Now, we multiply the two results from the previous steps:
[tex]\[
2.6207413942088964 \times 9.157713940426653 \approx 23.999999999999993
\][/tex]
### Final Answer
So, the result of the expression [tex]\((18)^{\frac{1}{3}} \times (768)^{\frac{1}{3}}\)[/tex] is approximately:
[tex]\[
23.999999999999993
\][/tex]
There you have a step-by-step solution for the given expression!