\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
\multicolumn{8}{|c|}{\textbf{Day 1 Lap Times (seconds)}} \\
\hline
83 & 92 & 91 & 89 & 94 & 93 & 88 & 84 \\
\hline
\multicolumn{8}{|c|}{\textbf{Day 2 Lap Times (seconds)}} \\
\hline
87 & 90 & 92 & 91 & 92 & 95 & 90 & 85 \\
\hline
\multicolumn{8}{|c|}{\textbf{Day 3 Lap Times (seconds)}} \\
\hline
85 & 86 & 91 & 93 & 91 & 89 & 88 & 84 \\
\hline
\end{tabular}

Which histogram represents Blanca's lap times for the three days of practice?



Answer :

Let's combine the lap times across all three days to represent Blanca's overall lap times.

From the given table, we have:

Day 1 Lap Times (in seconds):
83, 92, 91, 89, 94, 93, 88, 84

Day 2 Lap Times (in seconds):
87, 90, 92, 91, 92, 95, 90, 85

Day 3 Lap Times (in seconds):
85, 86, 91, 93, 91, 89, 88, 84

Now, let's list all the lap times together:

[tex]\[83, 92, 91, 89, 94, 93, 88, 84, 87, 90, 92, 91, 92, 95, 90, 85, 85, 86, 91, 93, 91, 89, 88, 84\][/tex]

To create a histogram, we need to group these times into intervals (bins) and count the number of lap times that fall into each interval. A common way to do this is to use intervals of 5 seconds. Here’s a possible bin breakdown:

- 80-84
- 85-89
- 90-94
- 95-99

Now, let’s count the number of times that fall into each of these bins.

1. 80-84 seconds:
- 83, 84, 84: 3 times

2. 85-89 seconds:
- 85, 85, 86, 88, 88, 89, 89: 7 times

3. 90-94 seconds:
- 90, 90, 91, 91, 91, 91, 91, 92, 92, 92, 93, 93, 94: 13 times

4. 95-99 seconds:
- 95: 1 time

Now we can represent this data in a histogram format:

- 80-84: | (3 times)
- 85-89: | (7 times)
- 90-94: |
(13 times)
- 95-99: | (1 time)

So, the histogram illustrating Blanca’s lap times for the three days will have:
- 3 entries in the 80-84 seconds bin,
- 7 entries in the 85-89 seconds bin,
- 13 entries in the 90-94 seconds bin,
- 1 entry in the 95-99 seconds bin.

Other Questions