Which function's graph has a period of 2?

A. [tex]y=3 \cos \pi x[/tex]
B. [tex]y=\cos \left(x-\frac{\pi}{2}\right)[/tex]
C. [tex]y=2 \sin 3x[/tex]
D. [tex]y=-4 \sin 2x[/tex]



Answer :

To determine the function whose graph has a period of 2, we need to evaluate and find the periods of each given function.

### Step-by-Step Solution:

1. Function A: [tex]\( y = 3 \cos \pi x \)[/tex]
- The general form of a cosine function is [tex]\( y = a \cos(bx + c) + d \)[/tex].
- The period of [tex]\( \cos(bx) \)[/tex] is [tex]\( \frac{2\pi}{b} \)[/tex].
- For [tex]\( y = 3 \cos \pi x \)[/tex], the coefficient [tex]\( b \)[/tex] of [tex]\( x \)[/tex] is [tex]\( \pi \)[/tex].
- Period = [tex]\( \frac{2\pi}{\pi} = 2 \)[/tex].

2. Function B: [tex]\( y = \cos \left( x - \frac{\pi}{2} \right) \)[/tex]
- This is in the form [tex]\( \cos(bx + c) \)[/tex].
- The coefficient [tex]\( b \)[/tex] of [tex]\( x \)[/tex] is 1.
- Period = [tex]\( \frac{2\pi}{1} = 2\pi \)[/tex].

3. Function C: [tex]\( y = 2 \sin 3x \)[/tex]
- The general form of a sine function is [tex]\( y = a \sin(bx + c) + d \)[/tex].
- The period of [tex]\( \sin(bx) \)[/tex] is [tex]\( \frac{2\pi}{b} \)[/tex].
- For [tex]\( y = 2 \sin 3x \)[/tex], the coefficient [tex]\( b \)[/tex] of [tex]\( x \)[/tex] is 3.
- Period = [tex]\( \frac{2\pi}{3} \)[/tex].

4. Function D: [tex]\( y = -4 \sin 2x \)[/tex]
- This is in the form [tex]\( \sin(bx + c) \)[/tex].
- The coefficient [tex]\( b \)[/tex] of [tex]\( x \)[/tex] is 2.
- Period = [tex]\( \frac{2\pi}{2} = \pi \)[/tex].

Given these results, we see that:
- The period of [tex]\( y = 3 \cos \pi x \)[/tex] (Function A) is 2.
- The periods of the other functions do not match 2.

Therefore, the correct function whose graph has a period of 2 is:

A. [tex]\( y = 3 \cos \pi x \)[/tex]