Express [tex]\frac{-15}{16}[/tex] as a rational number with:

(i) numerator [tex] = -30 [/tex]

(ii) numerator [tex] = 75 [/tex]

(iii) denominator [tex] = 48 [/tex]

(iv) denominator [tex] = -96 [/tex]



Answer :

To express the rational number [tex]\(\frac{-15}{16}\)[/tex] in different forms with specified numerators or denominators, we need to perform equivalent fraction operations. Here’s the step-by-step process for each case:

### (i) New numerator = -30
We want to find the new denominator when the numerator is [tex]\(-30\)[/tex].

Given the original fraction [tex]\(\frac{-15}{16}\)[/tex]:
[tex]\[ \frac{-15}{16} = \frac{-30}{x} \][/tex]

To find the new denominator [tex]\(x\)[/tex], we solve:
[tex]\[ -15 \cdot x = -30 \cdot 16 \][/tex]

Solving for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{-30 \cdot 16}{-15} = \frac{480}{15} = 32 \][/tex]

So, the equivalent fraction is [tex]\(\frac{-30}{32}\)[/tex].

### (ii) New numerator = 75
We want to find the new denominator when the numerator is [tex]\(75\)[/tex].

Given the original fraction [tex]\(\frac{-15}{16}\)[/tex]:
[tex]\[ \frac{-15}{16} = \frac{75}{x} \][/tex]

To find the new denominator [tex]\(x\)[/tex], we solve:
[tex]\[ -15 \cdot x = 75 \cdot 16 \][/tex]

Solving for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{75 \cdot 16}{-15} = \frac{1200}{-15} = -80 \][/tex]

So, the equivalent fraction is [tex]\(\frac{75}{-80}\)[/tex].

### (iii) New denominator = 48
We want to find the new numerator when the denominator is [tex]\(48\)[/tex].

Given the original fraction [tex]\(\frac{-15}{16}\)[/tex]:
[tex]\[ \frac{-15}{16} = \frac{y}{48} \][/tex]

To find the new numerator [tex]\(y\)[/tex], we solve:
[tex]\[ -15 \cdot 48 = y \cdot 16 \][/tex]

Solving for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{-15 \cdot 48}{16} = \frac{-720}{16} = -45 \][/tex]

So, the equivalent fraction is [tex]\(\frac{-45}{48}\)[/tex].

### (iv) New denominator = -96
We want to find the new numerator when the denominator is [tex]\(-96\)[/tex].

Given the original fraction [tex]\(\frac{-15}{16}\)[/tex]:
[tex]\[ \frac{-15}{16} = \frac{y}{-96} \][/tex]

To find the new numerator [tex]\(y\)[/tex], we solve:
[tex]\[ -15 \cdot -96 = y \cdot 16 \][/tex]

Solving for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{-15 \cdot -96}{16} = \frac{1440}{16} = 90 \][/tex]

So, the equivalent fraction is [tex]\(\frac{90}{-96}\)[/tex].

Therefore, the rational number [tex]\(\frac{-15}{16}\)[/tex] expressed as specified is:
1. [tex]\(\frac{-30}{32}\)[/tex]
2. [tex]\(\frac{75}{-80}\)[/tex]
3. [tex]\(\frac{-45}{48}\)[/tex]
4. [tex]\(\frac{90}{-96}\)[/tex]