Sure! Let's break down each part and solve them step by step.
### (2) Addition Problems:
#### (a) [tex]\(0.007 + 8.5 + 30.08\)[/tex]
To start:
1. Begin with [tex]\(0.007\)[/tex].
2. Add [tex]\(8.5\)[/tex] to [tex]\(0.007\)[/tex]:
[tex]\[0.007 + 8.5 = 8.507\][/tex]
3. Now, add [tex]\(30.08\)[/tex] to [tex]\(8.507\)[/tex]:
[tex]\[8.507 + 30.08 = 38.587\][/tex]
So, the result for [tex]\(0.007 + 8.5 + 30.08\)[/tex] is [tex]\(38.587\)[/tex].
#### (b) [tex]\(15 + 0.632 + 13.8\)[/tex]
To start:
1. Begin with [tex]\(15\)[/tex].
2. Add [tex]\(0.632\)[/tex] to [tex]\(15\)[/tex]:
[tex]\[15 + 0.632 = 15.632\][/tex]
3. Now, add [tex]\(13.8\)[/tex] to [tex]\(15.632\)[/tex]:
[tex]\[15.632 + 13.8 = 29.432\][/tex]
So, the result for [tex]\(15 + 0.632 + 13.8\)[/tex] is [tex]\(29.432\)[/tex].
### (3) Subtraction Problems:
#### (a) [tex]\(18.25\)[/tex] from [tex]\(20.75\)[/tex]
To start:
1. Begin with [tex]\(20.75\)[/tex].
2. Subtract [tex]\(18.25\)[/tex] from [tex]\(20.75\)[/tex]:
[tex]\[20.75 - 18.25 = 2.5\][/tex]
So, the result for subtracting [tex]\(18.25\)[/tex] from [tex]\(20.75\)[/tex] is [tex]\(2.5\)[/tex].
#### (b) [tex]\(202.54\)[/tex] from [tex]\(250\)[/tex]
To start:
1. Begin with [tex]\(250\)[/tex].
2. Subtract [tex]\(202.54\)[/tex] from [tex]\(250\)[/tex]:
[tex]\[250 - 202.54 = 47.46\][/tex]
So, the result for subtracting [tex]\(202.54\)[/tex] from [tex]\(250\)[/tex] is [tex]\(47.46\)[/tex].
### Summary:
- [tex]\(0.007 + 8.5 + 30.08 = 38.587\)[/tex]
- [tex]\(15 + 0.632 + 13.8 = 29.432\)[/tex]
- [tex]\(20.75 - 18.25 = 2.5\)[/tex]
- [tex]\(250 - 202.54 = 47.46\)[/tex]