Simplify the expression.

[tex]\frac{x^{\frac{4}{7}} \cdot x^{\frac{3}{7}}}{x^{\frac{1}{7}}}[/tex]

A. [tex]x^{\frac{7}{8}}[/tex]
B. [tex]x^{\frac{6}{7}}[/tex]
C. [tex]x^{\frac{7}{6}}[/tex]



Answer :

To simplify the given expression [tex]\(\frac{x^{\frac{4}{7}} \cdot x^{\frac{3}{7}}}{x^{\frac{1}{7}}}\)[/tex], follow these steps:

1. Combine the exponents in the numerator:
[tex]\[ x^{\frac{4}{7}} \cdot x^{\frac{3}{7}} = x^{\left(\frac{4}{7} + \frac{3}{7}\right)} \][/tex]
Since the bases are the same (both [tex]\(x\)[/tex]), you can add the exponents:
[tex]\[ x^{\frac{4}{7} + \frac{3}{7}} = x^{\frac{7}{7}} = x^1 = x \][/tex]

2. Simplify the fraction with the consolidated exponent:
[tex]\[ \frac{x}{x^{\frac{1}{7}}} \][/tex]
This can be rewritten as:
[tex]\[ x^{1} \div x^{\frac{1}{7}} \][/tex]
When dividing like bases, subtract the exponents:
[tex]\[ x^{1 - \frac{1}{7}} = x^{\frac{7}{7} - \frac{1}{7}} = x^{\frac{6}{7}} \][/tex]

Therefore, the simplified expression is:
[tex]\[ x^{\frac{6}{7}} \][/tex]

The correct answer is: [tex]\(x^{\frac{6}{7}}\)[/tex].