Answer:
To calculate the density of titanium, we can use the formula:
\[ \text{Density} = \frac{\text{Mass}}{\text{Volume}} \]
First, we need to determine the volume of the titanium bar. The volume \( V \) can be calculated using the cross-sectional area \( A \) and the length \( L \):
\[ V = A \times L \]
Given:
- Area \( A = 0.050 \, \text{m}^2 \)
- Length \( L = 0.40 \, \text{m} \)
\[ V = 0.050 \, \text{m}^2 \times 0.40 \, \text{m} = 0.020 \, \text{m}^3 \]
Now, we can calculate the density:
\[ \text{Density} = \frac{90.0 \, \text{kg}}{0.020 \, \text{m}^3} = 4500 \, \text{kg/m}^3 \]
So, the density of titanium is \( 4500 \, \text{kg/m}^3 \).