Answered

Select the correct answer.

In a particular species of frogs, black spots are a dominant trait and their absence is a recessive trait. In a population of frogs, 50 are homozygous for the dominant trait, 34 are heterozygous dominant, and 16 show the recessive trait. Which expression is the correct way to calculate the frequency of the dominant allele?

A. [tex]\frac{50}{100}[/tex]
B. [tex]\frac{84}{100}[/tex]
C. [tex]\frac{50}{200}[/tex]
D. [tex]\frac{134}{200}[/tex]
E. [tex]\frac{100}{200}[/tex]



Answer :

To find the correct expression to calculate the frequency of the dominant allele in this population of frogs, let’s follow these steps carefully:

1. Identify the number of frogs with each genotype:
- Homozygous dominant (AA): 50 frogs
- Heterozygous dominant (Aa): 34 frogs
- Homozygous recessive (aa): 16 frogs

2. Calculate the total number of frogs:
Given the numbers, the total population of frogs is:
[tex]\[ 50 \, (\text{homozygous dominant}) + 34 \, (\text{heterozygous dominant}) + 16 \, (\text{homozygous recessive}) = 100 \, \text{frogs} \][/tex]

3. Determine the number of dominant alleles:
Each homozygous dominant frog (AA) contributes 2 dominant alleles.
Each heterozygous dominant frog (Aa) contributes 1 dominant allele.
Homozygous recessive frogs (aa) do not contribute any dominant alleles.

Therefore, the number of dominant alleles is calculated as:
[tex]\[ (50 \, \text{homozygous dominant frogs} \times 2 \, \text{dominant alleles per frog}) + (34 \, \text{heterozygous dominant frogs} \times 1 \, \text{dominant allele per frog}) \][/tex]
[tex]\[ = 50 \times 2 + 34 \times 1 = 100 + 34 = 134 \][/tex]

4. Calculate the total number of alleles:
Since every frog has 2 alleles (one from each parent), the total number of alleles in the population is:
[tex]\[ 100 \, \text{frogs} \times 2 \, \text{alleles per frog} = 200 \, \text{alleles} \][/tex]

5. Calculate the frequency of the dominant allele:
The frequency of the dominant allele is the ratio of the number of dominant alleles to the total number of alleles. Thus, the frequency of the dominant allele is:
[tex]\[ \frac{\text{number of dominant alleles}}{\text{total number of alleles}} = \frac{134}{200} \][/tex]

Therefore, the correct answer is:
[tex]\[ D. \frac{134}{200} \][/tex]