Answer :
Sure! Let's solve the expression step by step. We need to expand the following expression:
[tex]\[ (2xy + 3z)(4x^2y^2 - 6xyz + 9z^2) \][/tex]
### Step 1: Distribute [tex]\(2xy\)[/tex] across the second term
[tex]\[ 2xy \cdot (4x^2y^2 - 6xyz + 9z^2) \][/tex]
Expanding this, we get:
[tex]\[ 2xy \cdot 4x^2y^2 - 2xy \cdot 6xyz + 2xy \cdot 9z^2 \][/tex]
Simplifying each term individually:
[tex]\[ = 8x^3y^3 - 12x^2y^2z + 18xyz^2 \][/tex]
### Step 2: Distribute [tex]\(3z\)[/tex] across the second term
[tex]\[ 3z \cdot (4x^2y^2 - 6xyz + 9z^2) \][/tex]
Expanding this, we get:
[tex]\[ 3z \cdot 4x^2y^2 - 3z \cdot 6xyz + 3z \cdot 9z^2 \][/tex]
Simplifying each term individually:
[tex]\[ = 12x^2y^2z - 18xyz^2 + 27z^3 \][/tex]
### Step 3: Combine all the expanded terms and simplify if necessary
Combining all the terms from Step 1 and Step 2:
[tex]\[ 8x^3y^3 - 12x^2y^2z + 18xyz^2 + 12x^2y^2z - 18xyz^2 + 27z^3 \][/tex]
Now, let's combine like terms:
- [tex]\( -12x^2y^2z \)[/tex] and [tex]\( +12x^2y^2z \)[/tex] cancel each other out.
- [tex]\( +18xyz^2 \)[/tex] and [tex]\( -18xyz^2 \)[/tex] cancel each other out.
So, we are left with:
[tex]\[ 8x^3y^3 + 27z^3 \][/tex]
Thus, the expanded form of the given expression is:
[tex]\[ 8x^3y^3 + 27z^3 \][/tex]
[tex]\[ (2xy + 3z)(4x^2y^2 - 6xyz + 9z^2) \][/tex]
### Step 1: Distribute [tex]\(2xy\)[/tex] across the second term
[tex]\[ 2xy \cdot (4x^2y^2 - 6xyz + 9z^2) \][/tex]
Expanding this, we get:
[tex]\[ 2xy \cdot 4x^2y^2 - 2xy \cdot 6xyz + 2xy \cdot 9z^2 \][/tex]
Simplifying each term individually:
[tex]\[ = 8x^3y^3 - 12x^2y^2z + 18xyz^2 \][/tex]
### Step 2: Distribute [tex]\(3z\)[/tex] across the second term
[tex]\[ 3z \cdot (4x^2y^2 - 6xyz + 9z^2) \][/tex]
Expanding this, we get:
[tex]\[ 3z \cdot 4x^2y^2 - 3z \cdot 6xyz + 3z \cdot 9z^2 \][/tex]
Simplifying each term individually:
[tex]\[ = 12x^2y^2z - 18xyz^2 + 27z^3 \][/tex]
### Step 3: Combine all the expanded terms and simplify if necessary
Combining all the terms from Step 1 and Step 2:
[tex]\[ 8x^3y^3 - 12x^2y^2z + 18xyz^2 + 12x^2y^2z - 18xyz^2 + 27z^3 \][/tex]
Now, let's combine like terms:
- [tex]\( -12x^2y^2z \)[/tex] and [tex]\( +12x^2y^2z \)[/tex] cancel each other out.
- [tex]\( +18xyz^2 \)[/tex] and [tex]\( -18xyz^2 \)[/tex] cancel each other out.
So, we are left with:
[tex]\[ 8x^3y^3 + 27z^3 \][/tex]
Thus, the expanded form of the given expression is:
[tex]\[ 8x^3y^3 + 27z^3 \][/tex]