Which of the following is equivalent to [tex]\left(x^3 y\right)^2[/tex]?

A. [tex]x^8 y^8[/tex]
B. [tex]x^6 y^3[/tex]
C. [tex]x^6 y^2[/tex]
D. [tex]x^5 y^2[/tex]



Answer :

To determine which of the given expressions is equivalent to [tex]\(\left(x^3 y \right)^2\)[/tex], we will simplify the expression step-by-step.

First, let's rewrite the given expression:

[tex]\[ \left(x^3 y \right)^2 \][/tex]

When raising a product to a power, we apply the power to each factor inside the parentheses. That means we will raise each term inside the parentheses [tex]\((x^3 \text{ and } y)\)[/tex] to the power of 2 separately. Using the property [tex]\((a \cdot b)^n = a^n \cdot b^n\)[/tex], we get:

[tex]\[ \left(x^3 y \right)^2 = (x^3)^2 \cdot (y)^2 \][/tex]

Next, we apply the exponent to each individual factor:

[tex]\[ (x^3)^2 \cdot (y)^2 \][/tex]

Now, apply the exponentiation rule [tex]\((a^m)^n = a^{m \cdot n}\)[/tex] to each term:

[tex]\[ (x^3)^2 = x^{3 \cdot 2} = x^6 \][/tex]

[tex]\[ (y)^2 = y^{1 \cdot 2} = y^2 \][/tex]

Combining these results, we get:

[tex]\[ x^6 \cdot y^2 = x^6 y^2 \][/tex]

Therefore, the given expression [tex]\(\left(x^3 y \right)^2\)[/tex] simplifies to [tex]\(x^6 y^2\)[/tex].

So, the correct equivalent expression is:

[tex]\[ \boxed{x^6 y^2} \][/tex]

From the provided choices:
A) [tex]\(x^8 y^8\)[/tex]
B) [tex]\(x^6 y^3\)[/tex]
C) [tex]\(x^6 y^2\)[/tex]
D) [tex]\(x^5 y^2\)[/tex]

The correct answer is:

[tex]\[ \boxed{C} \][/tex]